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Abstract

Some choice options are more difficult to compare than others. This paper develops
a theory of what makes a comparison complex, and how comparison complexity gener-
ates systematic mistakes in choice. In our model, options are easier to compare when
they 1) share similar features, holding fixed their value difference, and 2) are closer to
dominance. We show how these two postulates yield tractable measures of comparison
complexity in the domains of multiattribute, lottery, and intertemporal choice. Using
experimental data on binary choices, we demonstrate that our complexity measures
predict choice errors, choice inconsistency, and cognitive uncertainty across all three
domains. We then show how canonical anomalies in choice and valuation, such as con-
text effects, preference reversals, and apparent probability weighting and present bias
in the valuation of risky and intertemporal prospects, can be understood as responses
to comparison complexity.
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1 Introduction

Some choice options are hard to compare, and this difficulty leads to errors in decision-
making. Individuals choose health insurance plans, savings vehicles, and cell phone plans
that are in reality financially dominated. Even in settings where objective choice errors can-
not be identified, introspection reveals that we often face difficult comparisons: how should
one choose between job offers that differ in salary and equity compensation, mortgages
with different repayment schedules, or housecats of varying size and temperament? We
worry or even agonize over choosing incorrectly in such contexts, and these mistakes not
only have private welfare costs for market participants, but may also shape how markets
function.
While a growing economic literature on complexity considers what makes choices dif-

ficult, most theories of complexity operate at the option level — that is, they tell us what
makes a choice option difficult to value (e.g., Enke and Graeber, 2023; Enke et al., 2023;
Puri, 2023; Khaw et al., 2021). While this difficulty may shape behavior in certain contexts,
people often choose by comparing options directly rather than by producing absolute valu-
ations, and there are important differences between what makes options hard to compare
vs. hard to value. For instance, two lotteries may be difficult to value in the sense of having
many states, yet easy to compare if one lottery transparently dominates the other.
In this paper, we seek to answer two questions. First, what makes choice options hard to

compare?We develop a theory of comparison complexity applicable to the domains of multi-
attribute, lottery, and intertemporal choice, which formalizes the intuition that options are
harder to compare when they require the decision-maker to aggregate trade-offs across op-
tion features. We then test our theory using rich experimental data on binary choices across
all three domains, and demonstrate its predictive power relative to benchmark models. Sec-
ond, what are the behavioral consequences of comparison complexity?We embed our theory of
comparison complexity into a stochastic choice model in which the decision-maker chooses
based on noisy signals of how options compare, the precision of which are governed by our
theory of comparison complexity. We use our choice model to shed light on various sys-
tematic anomalies in choice and valuation, including context effects, preference reversals,
and apparent probability weighting and hyperbolic discounting in the valuation of risky
and intertemporal prospects. Through the lens of our model, these phenomena can all be
understood as a response to the cognitive difficulty of making comparisons.

Theory of comparison complexity. We develop a theory of comparison complexity, which
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(a) Multiattribute

x : $11/month, $3.35/GB
x ′ : $32/month, $1.6/GB
y : $10.5/month, $4.45/GB

(b) Lottery

x : $27 w.p. 25%, $3 w.p. 75%
x ′ : $9 for sure
y : $20 w.p. 20%, $3.2 w.p. 80%

(c) Intertemporal

x : $60 in 61 days
x ′ : $100 in 3 years
y : $40 in 60 days

Figure 1: Choice Domains. Comparisons between a) phone plans characterized by a monthly and
data use fee, b) monetary lotteries, and c) payoff flows. Note that x ∼ x ′ for a) a known monthly
data usage rate of 12 GB, b) a risk-neutral agent, and c) a monthly discount rate of δ = 0.95.

we formalize as the difficulty of identifying one’s preferred option from a binary menu. We
consider a decision-maker who is uncertain about the values of two options x and y , and
chooses based on a noisy signal of how the values compare. The precision of this signal,
τx y , captures the ease of comparison between x and y , and governs the decision-maker’s
likelihood of choosing the higher value option. We propose a theory of how τx y depends
on the features of choice options, applicable to the domains of multiattribute, lottery, and
intertemporal choice.
Much previous work argues that complexity arises when decision-makers must aggre-

gate different problem features to reach a conclusion. Our theory is motivated by the simple
observation that comparisons involve aggregating trade-offs across option features, and that
not all comparisons require the same degree of aggregation. To illustrate, consider the three
choice environments in Figure 1. Notice that across these domains, the comparison between
x and y is easy — there is little need to make trade-offs across option features to see that x

is in fact better than y . On the other hand, the comparison between x ′ and y is less obvious,
as the DM now must engage with non-trivial trade-offs across different option features: 1a)
involves a trade-off between the monthly fee vs. usage fee, 1b) involves trading off a higher
maximum payout against a lower payout probability, and 1c) involves a trade-off between
payout amount and delay.
Our theory is built on two formal principles that capture this notion of trade-off com-

plexity: similarity and dominance. First, we posit that holding fixed their value difference,
options are easier to compare if they are more similar— that is, that the ease of comparison
is an increasing transformation H of the value-dissimilarity ratio:

τx y = H
� |U(x)− U(y)|

d(x , y)

�

,

where the numerator contains the value difference between the two options and the denom-
inator is a distance metric measuring their dissimilarity. Intuitively, similar options require
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Domain Representation for τx yτx yτx y Distance Metric

Multiattribute
U(x) =

∑

k βk xk
τx y = H

� |U(x)− U(y)|
dL1(x , y)

�

dL1(x , y) =
∑

k

|βk(xk − yk)|

Lottery
EU(x) =

∑

w u(w) fx(w)
τx y = H

� |EU(x)− EU(y)|
dC DF (x , y)

�

dC DF (x , y) =

∫ 1

0

|u(F−1
x (q))− u(F−1

y (q))| dq

Intertemporal
PV (x) =

∑

t δ
t x t

τx y = H
� |PV (x)− PV (y)|

dC PF (x , y)

�

dC PF (x , y) = ln(1/δ)

∫ ∞

0

|Mx(t)−My(t)|δt d t

Table 1: Complexity Measures. F−1
x (q) = inf{w ∈ R : q ≤ Fx(w)} denotes the quantile function of a lottery x .

Mx(t) =
∑

t ′<t x t ′ denotes the cumulative payoff function of a payoff flow x .

less aggregation of trade-offs to compare, as the DM can divert attention from features that
are similar across options and so more easily assess their differences. This intuition echoes
work in psychology (Tversky and Edward Russo, 1969) and in economics (Rubinstein, 1988;
He and Natenzon, 2023) which has stressed the role of similarity in governing the ease of
comparison.
To pin down the specific dissimilarity measure, we appeal to our second principle: that

options are maximally easy to compare in the presence of dominance. Dominance elimi-
nates the need to aggregate trade-offs across features, and to the extent decision-makers
find this aggregation difficult, comparisons involving dominance relationships should be
more accurate than comparisons that do not. The relevant dominance notions in each of
our domains — attribute-wise dominance in multiattribute choice, first-order stochastic
dominance in lottery choice, and temporal dominance in intertemporal choice1 — give rise
to the appropriate dissimilarity measure in each domain, summarized in Table 1; for each
of these measures, options are maximally easy to compare when they share a dominance
relationship.
The postulates of similarity and dominance are not only satisfied by our representations,

but also are key in characterizing them; we show that axioms on binary choice behavior
corresponding to the postulates of similarity and dominance, in tandem with other easily
understood axioms, characterize our representations of τx y in each domain.

1We say an intertemporal payoff flow x temporally dominates y if at any point in time, x will have paid
off more in total than y .
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(a) Multiattribute (b) Lottery (c) Intertemporal

Figure 2: Binary Choice Rates vs. Complexity Measures. a) Plots the rate of choosing the lower valued
option against our multiattribute complexity measure. b) Plots the rate of choosing the less-preferred
option according to the best-fit expected utility model against our lottery complexity measure. c)
Plots the rate of choosing the option with lower present value against our intertemporal complexity
measure, where we use the best-fit discount factor to compute present value.

Tests of complexity measures. Our theory predicts that in binary choice, the prevalence
of 1) choice errors, 2) within-individual choice inconsistency, and 3) subjective uncertainty
over choices should be decreasing in the value-dissimilarity ratio. Using three experimental
datasets on binary choices corresponding to our three domains of interest, we show that
the value-dissimilarity ratio is strongly predictive of each of these behavioral indicators of
choice complexity. We collect datasets on multiattribute and intertemporal choice ourselves
and draw lottery choice data from Peterson et al. (2021) and Enke and Shubatt (2023). In
each set of experiments, subjects face a sequence of binary choice problems: in total we
study 662 choice problems between multiattribute goods with induced values; 10,923 lot-
tery choice problems; and 1100 choice problems between time-dated payoff streams. All
three datasets contain repeat instances of the same choice problem for a given subject, al-
lowing for the estimation of choice inconsistency rates, as well as a measure of subjects’
cognitive uncertainty— their subjective probability of choosing the lower-value option.
We find that the value-dissimilarity ratio is strongly predictive of choice “error" rates in

all three domains, where we define an error as a) choosing the lower-value option in mul-
tiattribute choice and b) choosing the less-preferred option according to a best-fit model of
risk and time preferences in lottery and intertemporal choice, respectively. This relationship
is quantitatively large — in multiattribute choice, for instance, error rates range from 5%
for choice problems with the highest value-dissimilarity ratio to more than 30% for choice
problems with the lowest ratio. As we see in Figure 2, similarly pronounced relationships
hold in intertemporal and lottery choice.
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We also find that within-subject choice inconsistency is decreasing in the value-dissimilarity
ratio across all three domains. In multi-attribute choice, inconsistency rates range from less
than 5% for choice problems with the highest value-dissimilarity ratio to over 20% for
choice problems with the lowest ratio, and we find similar relationships in lottery and in-
tertemporal choice. Finally, we document that the value-dissimilarity ratio predicts not only
comparison complexity revealed in choice behavior, but also captures subjective complexity,
i.e., how hard comparisons actually feel to subjects. We find a strong decreasing relation-
ship between cognitive uncertainty and the value-dissimilarity ratio.

Benchmarking predictive power. Using our experimental choice data, we benchmark the
predictive power of our theory against existing models in all three domains. We structurally
estimate a choice model in which choice rates depend only on the value-dissimilarity ratio.2
In multiattribute choice, our model delivers predictive power comparable to that of leading
behavioral choice models while using fewer free parameters, and importantly explains a
substantial amount of variation in choice that is not captured by existing models. In lottery
and intertemporal choice, our model substantially outperforms leading behavioral choice
models. In these domains, our model explains 10-28% more variation than the best alter-
native models without using any additional parameters (and in the case of lottery choice,
actually using fewer parameters).

Multinomial choice model and behavioral implications. Having developed and tested our
theory of comparison complexity, we embed the theory in a multinomial choice model to
study its behavioral implications beyond binary choice. In our choice model, the decision-
maker faces a menu of options, and chooses based on noisy signals on how each pair of
options in the menu compares. In particular, for each comparison (x , y) in the menu, the
decision-maker generates a signal on the value comparison between the two options with
precision τx y , where τx y is governed by the value-dissimilarity ratio; the DM then chooses
the option with the highest posterior expected value according to these signals.
Our choice model straightforwardly accounts for documented context effects in multino-

mial choice, such as the decoy and asymmetric dominance effects. Furthermore, we show
that in lottery and intertemporal choice, our model rationalizes documented instabilities
and biases in valuations, where here we formalize valuations within our choice model as a
set of comparisons between an option and different amounts of money in a multiple price

2Our structural model contains two free parameters for multiattribute choice, and three parameters for
lottery and intertemporal choice.
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list. The core insight is that some risky or intertemporal prospects are easier to compare to
money than others, which leads to systematic biases in valuations. Through this mechanism,
our model predicts apparent probability weighting and hyperbolic discounting in valuations
even in the absence of such distortions in direct choice, rationalizing documented prefer-
ence reversals. The model also makes the novel testable prediction that one can reverse the
direction of these biases by changing the numeraire in valuation: asking subjects to value
lotteries using probability-equivalents, and intertemporal payments using time-equivalents.

Contribution and relation to prior work. Our paper builds upon a growing literature on
complexity and cognitive uncertainty in choice. These papers have documented how com-
plexity can lead to noisy choice and/or systematically biased valuations (Enke and Shubatt,
2023; Puri, 2023, etc.), but typically focus on a single choice domain. Our unifying measure
of complexity can be computed across several choice domains and experimental settings,
offering a framework to tie together these disparate findings.
We also formalize insights from a more conceptual Psychology and Economics literature

on similarity in choice. These papers (Rubinstein, 1988; Tversky and Edward Russo, 1969)
use illustrative examples to argue that when agents choose between dissimilar objects, we
may expect more violations of standard choice axioms. We both introduce an explicit simi-
larity measure and formally model how similarity affects choice.
Finally, we bring cognitive insights and empirical evidence to a recently developing liter-

ature on stochastic choice. Our model belongs to a general class of moderate utility models
axiomatized in He and Natenzon (2023), wherein binary choice probabilities are a func-
tion of the value difference between two options normalized by their distance according to
a metric. We make three contributions to this literature. First, we propose specific distance
metrics in the domains of multiattribute, lottery, and intertemporal choice, motivated by
the idea that the need to aggregate tradeoffs across option features governs the difficulty
of comparison. Second, we provide a series of experimental tests of the model’s predic-
tions, quantifying the tight relationship between the complexity measure and cognitive
uncertainty, choice inconsistency, and choice errors. Third, we provide a novel and flexible
framework for extending this class of binary choice models to multinomial choice.
Section 2 lays out the binary choice model and discusses the psychological motivation

for the complexity measure. Section 3 describes the binary choice experiment design and
results. Section 4 introduces the extension to multinomial choice, and applies the model to
study context effects and valuations. Section 5 concludes. Proofs of all formal results are
relegated to Appendix C.
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2 Theory of Comparison Complexity

2.1 Binary Choice Framework

Let X denote the set of options, and let vx denote the value of each x ∈ X . We consider a
decision-maker (DM) who is uncertain over the value of each option in X , and when faced
with a binary choice {x , y}, chooses based on a noisy signal on how vx and vy compare.
In particular, the DM has continuous, i.i.d. priors over vx for all x ∈ X distributed accord-

ing to a symmetric distributionQ, and observes a signal sx y on the ordinal value comparison
between x and y , given by

sx y = sgn(vx − vy) +
1

p

τx y
εx y ,

εx y ∼ N(0, 1)

and chooses the option with the highest posterior expected value. Here, the precision param-
eter τx y governs the ease of comparison between x and y . Letting ρ(x , y) denote the likeli-
hood of choosing x over y 3, this signal structure implies that ρ(x , y) = P(sgn(vx− vy)τx y),
for some P continuous, strictly increasing, with P(t) = 1 − P(−t).⁴ That is, the decision-
maker’s likelihood of correctly choosing the higher-valued option is increasing in the ease of
comparison τx y . In what follows, we propose a theory of how τx y depends on the structure
of choice options in the domains of multiattribute, lottery, and intertemporal choice.

2.2 Comparison Complexity: General Principles

Our theory of τx y formalizes the intuition that the difficulty of a comparison is governed
by the degree to which it requires the DM to aggregate tradeoffs. The theory is grounded
in two principles that capture this intuition: similarity and dominance.
First, we posit holding fixed the value difference, options are easier to compare when

they are more similar. Echoing previous work in psychology (Tversky and Edward Russo,
1969) and in economics (Rubinstein, 1988; He and Natenzon, 2023), this property reflects
the intuition that if options are more similar, the DM can divert attention from the features
that are similar across the options and so more easily assess the differences between them,
thereby reducing the need to aggregate tradeoffs. As such, we propose a representation of

3In particular, ρ(x , y) = P(E[vx |sx y] > E[vy |sx y]), where the DM uniformly randomizes if E[vx |sx y] =
E[vy |sx y].
⁴In particular, P = Φ, where Φ is the standard normal CDF.
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the ease of comparison τx y that is an increasing transformation H of the value-dissimilarity
ratio:

τx y = H
� |U(x)− U(y)|

d(x , y)

�

,

where the numerator contains the value difference between the two options and the de-
nominator is a distance metric measuring their dissimilarity.
Second, we posit options are maximally easy to compare when there is a dominance

relationship between them. In the presence of dominance, the DM does not need to engage
with trade-offs to see which option is better, and so we should expect comparisons that
involve dominance to be easier those that do not. As formalized in the sections below, this
principle gives rise to a specific distance metric in each domain, depending on the domain-
relevant notion of dominance.

2.3 Multiattribute Choice

Consider the domain of multiattribute choice, where each option x ∈ X1× ...×Xn is defined
on n real-valued attributes, where X i ∈ R. Utility is linear in attributes, where the value of
each option x is given by vx = U(x) =

∑

k βk xk for attribute weights β ∈ Rn.⁵ We propose
that the ease of comparison in this domain is governed by the following representation:

Definition 1. Say that τx y has an L1-complexity representation, denoted τL1
x y , if there exists

β ∈ Rn, βk ̸= 0 for all k, such that

τx y = H
� |U(x)− U(y)|

dL1(x , y)

�

for H continuous, strictly increasing with H(0) = 0, where dL1(x , y) =
∑

k |βk(xk− yk)| is the
L1 distance between x and y in value-transformed attribute space.

In words, under the L1-complexity representation, the ease of comparison between two
options is governed by their value-dissimilarity ratio: their integrated value difference, nor-
malized by a distance metric equal to their feature-by-feature value difference.
Note that our proposed complexity representation satisfies the properties of similarity

and dominance. Holding fixed the value difference between two options, the ease of com-
parison is increasing in the similarity between x and y , as measured by a distance metric

⁵In Appendix B.1, we show how the model can be generalized to allow for additively separable preferences
that are not necessarily linear in attributes, and provide an axiomatic characterization of the generalized
model.

8



on the space of alternatives. Moreover, if there is an attribute-by-attribute dominance rela-
tionship between x and y; i.e. βk xk ≥ βk yk for all k, the ease of comparison τx y takes on
its maximal value of H(1).

L1-complexity also satisfies a simplification property, wherein reducing the number of
active attributes — that is, attributes along which there is a value difference — increases
the ease of comparison. To take an example, suppose n= 3, β = (1, 1,1), and consider the
following comparisons:

(x , y)
x = (10, 7,9)
y = (3, 15,5)

(x ′, y)
x ′ = (3, 14,9)
y = (3, 15,5)

Note that (x ′, y) is formed by eliminating the value difference along the first attribute and
redistributing that value to the second attribute. Our complexity representation predicts
that the DM finds (x ′, y) easier to compare than (x , y), i.e. τx ′ y > τx y . More generally, our
model predicts that eliminating a value difference along some attribute i and redistributing
it to another attribute j makes options easier to compare.⁶ This property again reflects
tradeoff complexity: if individuals find it difficult to aggregate tradeoffs across features,
we should expect that a simplification operation of the kind above, where some of that
aggregation is done for the decision-maker, makes the comparison easier.

2.3.1 Axiomatic Foundations

The above properties are not only satisfied by our complexity representation, but are also
key properties in its characterization. Our representation for τx y is characterized by axioms
on binary choice behavior corresponding to the properties of similarity, dominance, and
attribute simplification, along with three other easily understood axioms.
LetD = {(x , y) ∈ Rn×Rn : x ̸= y} denote the set of all pairs of distinct options. Consider

a binary choice rule ρ : D → [0, 1] satisfying ρ(x , y) = 1−ρ(y, x) for all x , y; here, ρ(x , y)
denotes the likelihood of choosing x over y . In our binary choice framework, τx y has an
L1-Complexity representation if and only if binary choice probabilities take the form below.

Definition 2. Say that a binary choice rule ρ has an L1-Complexity Representation if there

⁶That is, given any x , y , for x ′ satisfying x ′i = yi , x ′k = xk for all k ̸= i, j, with vx ′ = vx , we have τx ′ y ≥ τx y .
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exists β ∈ Rn, β ̸= 0, such that

ρ(x , y) = G
�

U(x)− U(y)
dL1(x , y)

�

for some G continuous, strictly increasing.

That is, under our representation for τx y , the likelihood of choosing x over y is an
increasing function of the signed value difference between the two options, normalized by
their L1 distance.
We now characterize our representation. Let x{k} y denote the option obtained by replac-

ing the kth attribute of y with xk⁷. Say that x dominates y , written x >D y , if ρ(x{k} y, y)≥
1/2 for all kwith a strict inequality for at least one k. Say that attribute k is null ifρ(x{k}z, y{k}z) =
1/2 for all x , y, z ∈ X . Consider the following axioms:

M1. Continuity: ρ(x , y) is continuous on its domain.

M2. Linearity: ρ(x , y) = ρ(αx + (1−α)z,αy + (1−α)z).

M3. Moderate Transitivity: Ifρ(x , y)≥ 1/2,ρ(y, z)≥ 1/2, then eitherρ(x , z)>min{ρ(x , y),ρ(y, z)}
or ρ(x , z) = ρ(x , y) = ρ(y, z).

M4. Dominance: If x >D y , then ρ(x , y)≥ ρ(w, z) for any w, z ∈ X , where the inequality
is strict if w ̸>D z.

M5. Simplification: For any x , x ′, y ∈ X , satisfying for i ̸= j

x ′k =















yi k = i

x ′j k = j

xk otherwise

for some x ′j ∈ X j: if ρ(x , y)≥ 1/2 and ρ(x ′, x) = 1/2, then ρ(x ′, y)≥ ρ(x , y).

Continuity and Linearity are standard axioms, and the latter reflects the fact that both
preferences and the L1 distance in our model are linear in attributes. Moderate Transitivity
is a transitivity condition on binary choice that allows for choice probabilities to depend

⁷That is (x{k} y)k = xk and (x{k} y) j = y j for all j ̸= k.
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on features of choice options other than their value difference – and specifically allows for
choice probabilities to depend on a notion of similarity between choice probabilities.⁸
Dominance and Simplification are the exact counterparts of the properties of τL1

x y dis-
cussed earlier, stated in terms of choice probabilities. Dominance says that if x is revealed
better than y on every attribute, then the likelihood of correctly choosing x takes on its
maximal value. Simplification says that if we eliminate the value difference between x and
y along some attribute and redistribute that value to another attribute of x , the likelihood
of correctly choosing x increases.
The following theorem says that when there are 3 or more attributes, M1–M5 charac-

terize the behavioral implications of our representation for binary choice data, and that the
parameters (G,β) of our representation can be identified from binary choice data.⁹

Theorem 1. Suppose that all attributes are non-null and n> 2. ρ(x , y) has a L1-complexity
representation (G,β) if and only if it satisfies M1–M5. Moreover, if ρ(x , y) also has a L1-
complexity representation (G′,β ′), then G′ = G and β ′ = Cβ for C > 0.

2.4 Risky and Intertemporal Choice

2.4.1 Lotteries

Consider the lottery domain, where each option x is a finite-support lottery over R; that
is each x is described by the mass function fx : R → [0,1] where fx(w) > 0 for finitely
many w. Let Fx and F−1

x denote the CDF and quantile function of x . Preferences are given
by expected utility, with vx = EU(x) =

∑

w u(w) fx(w) for u strictly increasing.

Definition 3. τx y has an CDF-complexity representation, denoted τC DF
x y , if for u strictly in-

creasing,

τx y = H
� |EU(x)− EU(y)|

dC DF(x , y)

�

⁸In particular, He and Natenzon (2023) show that a binary choice rule ρ acting on a finite domain satisfies
Moderate Transitivity if and only if ρ(x , y) is increasing in the value difference between x and y , normalized
by the distance between x and y according to some distance metric d(x , y). While this equivalence does not
hold in our choice domains as they are not finite, our other axioms can be thought of as adding structure to
this distance metric.
⁹In Appendix B.1, we show that the two attribute case is characterized by adding an Exchangeability

axiom, which says that swapping attribute labels (while making the appropriate adjustments to account for
attribute weights) will not affect choice.
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for H continuous, strictly increasing with H(0) = 0, where the CDF distance dC DF is given by

dC DF(x , y) =

∫ 1

0

|u(F−1
x (q))− u(F−1

y (q))| dq

As with the L1-complexity representation, the ease of comparison between two options
under the CDF-complexity representation is governed by their value-dissimilarity ratio —
that is, the value difference between the two options normalized by a measure of their
dissimilarity. The specific dissimilaritymeasure in our representation, dC DF(x , y), is ametric
equal to the area between the utility-valued CDFs of x and y , and so captures how similarly
the payoffs in x and y are distributed.1⁰
This measure provides a formal foundation for existing empirical work which documents

a tight connection between the CDF distance and choice rates. In particular, both Enke
and Shubatt (2023) and Erev et al. (2002) show that the performance of stochastic choice
models over lotteries dramatically improves when decision noise is allowed to vary with the
a special case of the CDF distance, with u(x) = x .

2.4.2 Intertemporal Payoff Flows

Now consider the intertemporal domain, where each option x is a finite stream of time-
dated payoffs; each x is described by the payoff function mx : [0,∞)→ R where mx(t) ̸= 0

for finitely many t;mx(t) describes howmuch x pays off at time t. Let Mx(t) =
∑

t ′≤t mx(t ′)
denote the cumulative payoff function of x , which describes how much money x pays in
total up until time t. Preferences are given by exponential discounting, with vx = PV (x) =
∑

t δ
t mx(t), for δ < 1.11

Definition 4. τx y has an CPF-complexity representation, denoted τC PF
x ,y , if there exists δ < 1

such that

τx y = H
� |PV (x)− PV (y)|

dC PF(x , y)

�

1⁰dC DF is a special case of the Wasserstein metric, a distance notion defined on probability distributions
over a metric space.
11In Appendix B.1 we show how the theory can be generalized to allow for a general decreasing discount

function d : [0,∞)→ R+, and provide an axiomatic characterization of this generalized model.
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for H continuous, strictly increasing with H(0) = 0, where the CPF distance dC PF is given by

dC PF(x , y) = ln(1/δ)

∫ ∞

0

|Mx(t)−My(t)| ·δt d t.

As with our previous complexity measures, the ease of comparison between two op-
tions under the CPF-complexity representation is governed by their value-dissimilarity ratio,
where the dissimilarity measure dC PF(x , y) is a metric that is proportional to the present
value of the difference between the cumulative payoff functions of x and y , and captures
how similarly x and y distribute their payoffs across time.

2.4.3 Shared Properties

Like our multiattribute complexity measure, τC DF
x y and τC PF

x y satisfy our core properties of
similarity and dominance. Holding fixed the value difference, τC DF

x y and τC PF
x y are increas-

ing in the similarity between x and y , as measured by a distance metric on the space of
alternatives, where this distance metric is chosen to so that τx y takes on its maximal value
when there is a dominance relationship between x and y . In particular, say that a lottery
x first-order stochastically dominates y when Fx(w)≤ Fy(w) for all w, and say that a payoff
flow x temporally dominates y if if Mx(t) ≥ My(t) for all t — that is, if x will have paid
out more in total than y at any point in time. Notice that τC DF

x y takes on its maximal value
of H(1) when there is a first-order stochastic dominance relationship between lotteries x

and y , and τC PF
x y takes on their maximal value of H(1) when there is a temporal dominance

relationship between payoff flows x and y .
τC DF

x y and τ
C PF
x y also satisfy analogs of the simplification property for τ

L1
x y , which says that

aggregating value differences across different features into the same feature makes options
easier to compare. As formally stated in Appendix B.1, concentrating value differences from
different percentile regions in the distribution of two lotteries x ,y into the same region
increases the ease of comparison according to τC DF

x y , and concentrating value differences
from different time periods of two payoff flows x , y into the same time period increases the
ease of comparison according to τC PF

x y .

2.4.4 Axiomatic Foundations

The binary choice behavior implied by τC DF
x y and τC PF

x y can be characterized using axioms
analogous to M1—M5. In Appendix B.1, we show how the binary choice rules correspond-
ing to τC DF

x y and τC PF
x y are characterized by five axioms: direct translations of Continuity,
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Linearity, Moderate Transitivity, and Dominance, and an analog of Simplification.

2.4.5 Connection to L1 Complexity

Our complexity measures for risk and time not only share the same properties of our multi-
attribute measure, but can also be interpreted as extensions of L1 complexity. We relegate
discussion of the connection between CPF and L1 complexity to the appendix, and discuss
the connection between CDF and L1 complexity below. CDF complexity is equivalent to
L1 complexity when applied to a common attribute representation of lotteries — specifi-
cally, the attribute representation that maximizes the ease of comparison according to L1

complexity.
Consider the set of possible couplings of lotteries x , y — that is, the set Γ (x , y) of joint

distributions g(wx , w y) over payoffs such that
∑

w y
g(w, w y) = fx(w) and

∑

wx
g(wx , w) =

f y(w) for all w. Note that each coupling g induces an attribute representation of x and y ,
in which the attributes are given by the set of joint utility-transformed payoff realizations
in the support of g, weighted by the likelihoods of those payoff realizations under g.12
To take an example, consider a lottery x which pays $18 w.p. 20%, and y which pays

$12 w.p. 25%, and consider the attribute structures induced by two different couplings:

60% 20% 5% 15%

x u(0) u(0) u(18) u(18)
y u(0) u(12) u(12) u(0)

75% 5% 20%

x u(0) u(0) u(18)
y u(0) u(12) u(12)

The attribute structure on the left corresponds to a coupling in which the lotteries are un-
correlated, and the attribute structure on the right corresponds to a coupling that imposes
positive correlation between the lotteries. For each attribute structure induced by g, we can
compute the ease of comparison under L1 complexity, given by13

τL1
x y(g)≡ H

� |
∑

wx ,w y
g(wx , w y)(u(wx)− u(w y))|

∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|

�

= H

�

|EU(x)− EU(y)|
∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|

�

.

Proposition 1 says that the attribute structure g that maximizes the ease of comparison
according to τL1

x y(g) gives rise to exactly the CDF complexity representation.

12Such attribute representations of lotteries have been used in previous work, such as Bordalo, et al. (2012).
13For example, in the risk neutral case where u(w) = w, the ease of comparison is given by

H
�

0.05·(6)+0.15·(18)−0.2·(12)
0.05·(6)+0.15·(18)+0.2·(12)

�

= H(0.11) for the leftmost attribute representation and H
�

0.20·(6)−0.05·(12)
0.2·(14)+0.6·(4)

�

=
H(0.33) for the rightmost attribute representation
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Proposition 1. max
g∈Γ (x ,y)

τL1
x y(g) = H

�

EU(x)−EU(y)
dC DF (x ,y)

�

.

Proposition 1 points to the following two-stage cognitive interpretation of our CDF com-
plexity measure: in a “representation stage", the DM first represents the lotteries using a
common set of attributes, and then compares the lotteries along these attributes in an “eval-
uation stage". In particular, Proposition 1 says that if the DM represents the lotteries using
an attribute structure that maximizes their comparability in the evaluation stage, where
this ease of comparison is governed by L1-complexity, the overall ease of comparison will
be given by CDF complexity.
As with our lottery complexity measure, CPF complexity can be seen as an extension

of L1 complexity to intertemporal choice. In Appendix B.2, we show how the CPF complex-
ity representation can be similarly derived as the L1 complexity for the common attribute
representation of intertemporal payoff flows that maximizes their ease of comparison.

2.5 Parameterizing the Model

In each of our domains, our model predicts that the the probability of choosing option x

over y is given by

ρ(x , y) = G
�

U(x)− U(y)
d(x , y)

�

,

where the signed value-dissimilarity ratio U(x)−U(y)
d(x ,y) is specified in each domain according

to Definitions 1,3, and 4, and G is a strictly increasing transformation that is symmetric
around 0, with G(r) = 1− G(−r).1⁴ To obtain quantitative predictions, the analyst needs
to specify the preference parameters that enter the value-dissimilarity ratio — the attribute
weights β in multiattribute choice, the Bernoulli utility function u in lottery choice, and
the discount factor δ in intertemporal choice — as well as the transformation G. In each
domain, these objects can identified from binary choice data, as demonstrated in Theorem
1 for multiattribute choice, and in Appendix B.1 for our other two domains.
When fitting our model to data, as in Section 3, our preferred specification of G is given

1⁴There is a one-to-one correspondence between G, which maps the signed value-dissimilarity ratio into
choice probabilities ρ(x , y), and H, which maps the value-dissimilarity ratio into signal precisions τx y . In
particular, for r ∈ [0, 1], H(r) = (Φ−1(G(r))2, where Φ is the standard normal CDF.
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by the two-parameter functional form

G(r) =

(

(1− κ)− (0.5−κ)(1− r)γ r ≥ 0

κ+ (0.5− κ)(1+ r)γ r < 0
(1)

Here κ is a tremble parameter that governs the DM’s error rate at dominance, and γ governs
the curvature in the relationship between choice probabilities and the value-dissimilarity
ratio. Note that for γ < 1, error rates will be concave in |r|, which captures the possibility
that the difficulty of a comparison may be steeply increasing away from dominance.
Note that γ < 1 also implies that choice rates will be relatively insensitive to the value-

dissimilarity ratio at indifference (i.e. at r = 0) whereas psychometric evidence typically
finds that accuracy rates are S-shaped in the difference between stimuli in unidimensional
stimulus comparison tasks, and are therefore most sensitive to the differences between
stimuli when they are close to equality (Woodrow, 1933; Gescheider, 2013).1⁵ As such, we
will also consider a three parameter functional form,

G(r) =











(1− κ)− (0.5−κ)
(1− r)γ

(rψ + (1− r)ψ)1/ψ
r ≥ 0

κ+ (0.5−κ)
((1+ r)γ

rψ + (1− r)ψ)1/ψ
r < 0

(2)

where the additional parameter ψ governs the sensitivity of choice rates to r around indif-
ference. Note that when ψ= 1, (2) reduces to (1).

3 Experimental Tests

We test our proposed representations of comparison complexity against data from three
analogous binary choice experiments in multiattribute, intertemporal, and lottery choice.
We first provide an overview of the goals and design features shared across the three exper-
iments, and then present domain-specific details along with results.

1⁵Our model can be seen as capturing the influence of both the integrated stimulus difference (the numer-
ator in the value-dissimilarity ratio) as well as the complexity of comparing multidimensional stimuli (the
denominator in the value-dissimilarity ratio) on accuracy rates.
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3.1 Overview

The goals of these experiments are two-fold. First, we want to show that our proposed
complexity ratios capture the difficulty of comparisons. In particular, our theory predicts
that (1) choice errors, (2) choice inconsistency, and (3) subjective uncertainty, three natural
indicators of choice complexity, should all be decreasing in the value-dissimilarity ratio. We
show that our ratios are highly predictive of all three. Second, we want to show that even
in relatively simple decision contexts, our model captures quantitatively important features
of choice that are missed by standard models. We show that despite having a comparable
number of or in some cases far fewer free parameters, our structurally estimated choice
model is able to explain observed choice rates 20-30% better than leading behavioral models
in the domains of lottery and intertemporal choice, and predicts variation in choice not
captured by the best-fit behavioral model in multiattribute choice.
We address these questions in three parallel experimental datasets. We run new experi-

ments in multi-attribute and intertemporal choice and compile existing data from Enke and
Shubatt (2023) and Peterson et al. (2021) to study risky choice. In our experiments, we re-
cruit participants through an online survey platform to make 50 incentivized binary choice
problems. For each problem, we elicit participants’ subjective certainty in their response. In
order to measure choice consistency, 10 of these problems are randomly repeated through-
out the survey. We collect an average of 37 choices for each of 662 multi-attribute choice
problems and 1,100 intertemporal problems – a total of more than 66,000 individual deci-
sions. Our compiled risk dataset includes nearly 10,000 problems (over 1 million decisions)
and includes similar measures of cognitive uncertainty and consistency.1⁶

3.2 Multiattribute Choice

We ask participants to identify the cheaper of two hypothetical phone plans characterized
by either two, three, or four attributes. These attributes include a device cost, a monthly flat
fee, a data usage fee, and a quarterly wi-fi fee. Participants learn about a fictional consumer
with a fixed budget and are asked to choose the plan that will save the consumer the most
money over one year. The consumer’s data usage is known, and so each problem has an
objectively payoff-maximizing answer, allowing us to perfectly observe choice errors. For

1⁶Cognitive uncertainty is elicited only for the 500 problems from Enke and Shubatt (2023). Problems are
only repeated in the Peterson et al. (2021) experiment. Unlike our experiments, subjects see these repeated
problems immediately after giving an initial response.
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three-attribute problems, the budget is $700 and the average plan costs $621.1⁷ We fix the
plans’ value difference at one of two values ($46 or $69) so that variation in the L1 ratio
mostly reflects variation in option similarity. If a participant is selected to earn a bonus (1
in 2 chance), we select one of their choices at random and pay them 1/12 of the money
they saved. These payments range between $4 and $9. For more detail on the design and
pre-registration, see Appendix D.
Figure 3 shows binned scatter plots relating the ratio (x-axis) to choice errors, cognitive

uncertainty, and inconsistency. We see that all three are strongly decreasing in the ratio.
The average error rate, only around 5% for problems near-dominance, increases five-fold
for problems with the lowest values of the L1 ratio (R2 = 0.32). We take this as strong
evidence that (1) the ratio indeed captures cognitive complexity, and (2) decision-makers
respond to this complexity by making more random choices.

(a) Errors (b) Uncertainty (c) Inconsistency

Figure 3: Error rates, cognitive uncertainty, and choice inconsistency in multi-attribute choice. Each
of the 12 points summarizes approximately 48 problems.

Importantly, these relationships are not driven by variation in the value difference alone,
but instead by variation in the L1 ratio, which we varied independently of the value differ-
ence when constructing the choice problems. The regression evidence in Appendix Table
2 shows that the relationships above are unchanged when including controls for the value
difference.1⁸

1⁷The majority of our problems involve three attributes. For two-attribute problems, the budget is $480
(average cost $410). For four-attribute problems, the budget is $760 (average cost $688).
1⁸Due to the concern of calculator usage in our experiment, we pre-registered analyses for the subsample of

subjects who do not report using a calculator in the experiment, in addition to the full sample. Appendix Table
3 reports analyses restricting to this subsample of 407 subjects (82.5% of the full sample). The quantitative
relationships in this subsample are virtually unchanged.
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3.2.1 Benchmarking Performance

To study whether our theory explains variation in choice patterns that are not captured by
existing behavioral models of multiattribute choice, we conduct a benchmarking exercise in
which we structurally estimate our choice model, using the parameter specifications in (1)
and (2), and compare its performance to leading behavioral multiattribute choice models,
which we also structurally estimate on our data. We estimate three such models, each of
which deliver accounts of how various biases lead to under- or overweighting of attributes
in choice: salience-weighting (Bordalo et al., 2013), focusing (Kőszegi and Szeidl, 2013),
and relative thinking (Bushong et al., 2021), each with logit errors (see Appendix E.1 for
details on the structural models).
Appendix Table 4 summarizes the estimation results. In predicting choice rates at the

problem level, the fitted salience, focusing, and relative thinkingmodels achieve R2 values of
.001, .001, and 0.35, respectively. Despite having one fewer free parameter than the relative
thinking model, the two-parameter version of our choice model delivers a comparable R2 of
0.29.1⁹ Importantly, our model explains a substantial amount of variation in choice data not
captured by the relative thinking model; as Appendix Table 5 documents, when regressing
actual choice rates vs. fitted choice rates under the relative thinking model, including the
fitted choice rates under our choice model as an additional predictor results in an increase
in R2 from 0.35 to 0.41, a 19% increase in variance explained.

3.3 Intertemporal Choice

We ask participants to choose which of two time-dated payoff streams they would prefer to
receive. Each option has one or two payoffs, ranging between $1 and $40, to be received at
delays ranging between the present and 2 years in the future. If the subject wins a bonus
(1 in 5 chance), they will actually receive one of the payment streams they selected on the
specified dates. For more details on the design and pre-registration, see Appendix D.
Unlike in multi-attribute choice, we cannot observe choice errors here – the definition of

an “error” depends on the decision-maker’s discount function, which is unknown. The CPF
ratio also depends on this discount function, so we proceed by experimentally estimating
a representative agent exponential discount factor δ from the choice data. We estimate
the choice model with additive logit errors, which yields a monthly discount factor of 0.93.
For details on the specification, see Appendix E.1. In Figure 4, we present the main results
from the intertemporal experiment. Here, a choice is coded as an “error” if an individual

1⁹As Table 5 documents, the three parameter version of our choice model yields an R2 of 0.32.
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chooses the option with lower present value according to the estimated discount factor.
As in our multiattribute choice data, we find very strong relationships between the CPF
ratio and choice “errors,” cognitive uncertainty, and inconsistency. The average "error" rate
ranges from around 5% for problems with the highest value of the CPF ratio to 50% for
problems with the lowest value of the CPF ratio (R2 = 0.6). As the regression evidence
in Appendix Table 6 documents, these relationships are virtually quantitatively unchanged
when controlling for the value difference, which indicates that the ratio between the value
difference and our proposed dissimilarity measure — as opposed to the value difference
alone — is driving these relationships.

(a) “Errors” (b) Uncertainty (c) Inconsistency

Figure 4: “Error” rates, cognitive uncertainty, and choice inconsistency in intertemporal choice. Each
point summarizes approximately 44 problems.

3.3.1 Heterogeneity

In principle, the “errors” plotted in Figure 4a could reflect heterogeneous preferences. The
inconsistency and cognitive uncertainty results suggest that this cannot be the entire story,
as these measures are all within-subject, and do not depend on estimated preferences. More-
oever, we can perform the error analysis using individual-level discount factors δi, which
we estimate using the 50 choices observed for each subject. Using these individually esti-
mated discount factors, we find a similarly pronounced relationship between the CPF ratio
and apparent errors (see Appendix Figure 10 and Table 7).

3.3.2 Benchmarking Performance

While Figure 4 indicates that our model is a good descriptor of choice, but leaves open
the question over whether the value-dissimilarity ratio explains meaningful variation in
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choice behavior that is not captured by other models. To this end, we conduct a benchmark-
ing exercise analogous to that in Section 3.2.1 in which we structurally estimate our choice
model, using the parameterization specified in (1), and compare its performance to leading
intertemporal choice models. We estimate two such models: standard exponential discount-
ing and hyperbolic discounting, both with logit errors (see Appendix E.2 for details on the
structural models). In predicting choice rates at the problem level, these models achieve R2

values of 0.75 and 0.78 respectively. In contrast, our model achieves an R2 of 0.88 – a 13%
improvement in variance explained over hyperbolic discounting, using the same number of
parameters. Appendix Table 8 summarizes the estimation results.

3.4 Lottery Choice

In both lottery choice experiments, participants were asked to choose between two lotteries
which pay off different amounts with known probabilities. If participants were selected to
receive a bonus, the computer would simulate one of their chosen lotteries and actually pay
out the simulated value. As in intertemporal choice, both the CDF ratio and our notion of
choice “errors” depend on an unknown preference parameter – the Bernoulli utility function.
We proceed by estimating a representative-agent model of CRRA utility with additive logit
errors (see Appendix E.3 for details), and code “errors” as departures from this estimated
model. Figure 5 shows the results. Once again, all three outcomes are strongly decreasing in
the ratio; in particular, the CDF ratio achieves an R2 of 0.45 in variance explained over error
rates. Consistent with our results in our other two domains, these relationships are driven
by the value-dissimilarity ratio, as opposed to the value difference alone: as Appendix Table
9 demonstrates, the relationships below are quantitatively similar when including controls
for the value difference.

(a) “Errors” (b) Uncertainty (c) Inconsistency

Figure 5: “Error” rates, cognitive uncertainty, and choice inconsistency in lottery choice.
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3.4.1 Heterogeneity

As in intertemporal choice, we can recreate the error analysis using individual-level risk
aversion parameters αi, which we estimate using the 50 lottery choices observed for each
individual in the data collected in Enke and Shubatt (2023).2⁰ Using these individually
estimated risk aversion parameters, we find if anything a stronger relationship between the
CPF ratio and apparent errors (see Appendix Figure 11 and Table 10).

3.4.2 Benchmarking Performance

As with intertemporal choice, our model explains significant variation in choice rates uncap-
tured by existing rational and behavioral choice models. To benchmark performance, we
estimate a standard reference-dependent expected utility model as well as a full prospect
theory model with loss aversion (see Appendix E.3 for details). We compare the perfor-
mance of these models to two versions of our CDF complexity model, both of which use
the paramterization of G specified in (1): one that assumes risk neutral preferences, and
one that allows for utility curvature, jointly estimated along with the parameters for G (see
Appendix E.3 for details).
Appendix Table 11 summarizes the estimation results. In predicting choice rates at the

problem level, reference dependent expected utility and prospect theory achieve R2 values
of 0.56 and 0.59 respectively. Despite having four fewer parameters than prospect theory,
the risk-neutral version of our model achieves an R2 of 0.66 – a 12% improvement in vari-
ance explained over prospect theory. This is in line with results from Enke and Shubatt
(2023), who find that allowing complexity to enter the noise term of a logit choice model
substantially improves performance over standard models.21 Adding an additional param-
eter to capture utility curvature in our model yields an R2 of 0.73 – a 24% improvement in
variance explained over prospect theory.

2⁰We restrict this analysis to the data in Enke and Shubatt (2023) since the data in Peterson et al. (2021)
contains too few unique choice problems for each subject to allow for estimation of individual-level risk pref-
erences.
21The “complexity index” developed by Enke and Shubatt loads heavily on “excess dissimilarity,” which is

tightly connected to our ratio: it is exactly equal to the denominator of the CDF ratio minus the numerator,
assuming risk-neutral preferences.
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4 Multinomial Choice

We have thus far focused on comparison complexity in binary choice. We now extend our
model to multinomial choice and show how comparison complexity can rationalize a range
of documented anomalies in choice and valuation, such as context effects, preference rever-
sals, and apparent biases in the valuation of risky and intertemporal prospects.

4.1 Multinomial Choice Extension

Consider the same setting as in our binary choice framework. There is a set of options
X , and the DM has continuous, iid priors over vz for all z ∈ X , distributed according to
a symmetric distribution Q. Let M denote the collection of finite subsets of X , and let
A = {A ∈ M : |A| ≥ 2} denote the set of finite menus. The DM faces a choice problem
(A, C) ∈A ×M , comprised of a menu of options A and a choice context C – a set of options
the DM observes but cannot choose, i.e. phantom options. The DM chooses from A based on
signals on how each pair of options in A∪ C compare.
In particular, for each pair of distinct options x , y ∈ A∪ C , the DM observes a signal of

the form

sx y = sgn(vx − vy) +
1

p

τx y
εx y ,

εx y ∼ N(0, 1)

Letting s denote the collection of these signals, the DM chooses the option x ∈ A with
the maximal posterior expected value E[vx |s]. We are interested in the resulting choice
probabilities in a choice problem, which are given by22

ρ(x , A|C) = P({s : E[vx |s]> E[vy |s]∀ y ∈ A/{x}})

Note that the restriction of this choice model to binary choice problems, i.e. (A, C) such that
|A|= 2 and C =∅, is exactly the binary choice model studied in Section 2. With some abuse
of notation, we will let ρ(x , y) = ρ(x , {x , y}|∅) denote binary choice probabilities, and let
ρ(x , y|C) = ρ(x , {x , y}|C) denote binary choice probabilities given a choice context C .

Discussion of model properties. As this model extends our binary choice framework, it

22This formulation for ρ(x , A|C) holds when ties in posterior expectations occur with probability 0. In the
case of ties, we assume a symmetric tiebreaking rule. See Appendix B.3 for details.
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delivers the prediction that binary choices are unbiased – that is, the DM always picks the
higher-valued option weakly more often in binary choice problems.23 In choice from larger
menus, however, the presence of comparisons to other options in the menu or choice context
can lead to systematic distortions in choice.
To illustrate, consider an example where X = {x , y, z}, with vx > vy > vz and where

τx y = τxz = 0, τyz =∞. That is, the DM has no idea how x compares to y and z, but
knows that y is better than z. Here, the model predicts that ρ(y, x |{z}) = 0 – the presence
of z in the choice context provides additional information that rules out posterior beliefs
over (vx , vy , vz) in which vy < vz, thus distorting the the DM’s choice in favor of the inferior
option y . In Section 4.2, we show how the model can rationalize a number of documented
context effects using this logic.
To apply the choice model in a given domain, the analyst needs to specify the ranking

of the choice options according to vz as well as the precision parameters τx y . While these
primitives can be identified using binary choice behavior, as we show in Appendix B.4, our
approach in the remainder of this section will be to discipline the model using our theory
of comparison complexity, which pins down the primitives vx and τx y in the domains of
multiattribute, lottery, and intertemporal choice.

Relationship to Existing Models. Our model belongs to class of menu-dependent learn-
ing models (e.g. Safonov, 2022; Natenzon, 2019), in which the DM chooses based on a
signal that depends on the menu that she faces. One model in this class that warrants dis-
cussion is the Bayesian Probit model in Natenzon (2019). In this model, the DM has i.i.d.
Gaussian priors over vx , and chooses based on signals sx = vx+

1
pεx received for each option

in the menu, where the εx ∼ N(0, 1) are jointly normal across options. The pairwise corre-
lations of (εx ,εy) allow the model to capture a notion of the ease of comparability between
choice options, where choice options are more easily comparable if (εx ,εy) are more highly
correlated.
Recall that in our model, the DM only receives information on ordinal value compar-

isons. In Bayesian Probit, the DM learns about the cardinal value differences between choice
options, which rules out certain intuitive choice patterns. For instance, consider the the fol-

23In particular, our model satisfies the Weak Transitivity condition, which says if ρ(x , y)≥ 1/2, ρ(y, z)≥
1/2, then ρ(x , z)≥ 1/2
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lowing choice options in the multiattribute domain:

x = (11, 0)

y = (0, 10)

z = (0, 0)

Since z is dominated by both x and y , we might expect that ρ(x , z) = ρ(y, z) = 1 and also
ρ(x , y) < 1; that is, the DM does not err in the presence of dominance but finds tradeoffs
across attributes difficult. Bayesian Probit cannot rationalize this choice data; ρ(x , z) =
ρ(y, z) = 1 implies that Cor(εx ,εz) = Cor(εy ,εz) = 1,2⁴ which implies Cor(εx ,εy) = 1.
This yields the counterfactual prediction ρ(x , y) = 1.
Intuitively, in Bayesian Probit the DM receives information on the cardinal value differ-

ence between choice options. As such, when the Bayesian Probit DM perfectly learns the
cardinal value differences vx − vz and vy − vz, they also learn the value difference vx − vy .
In our model, on the other hand, the DM only receives information on the ordinal value
comparison between choice options, which allows for situations in which the DM perfectly
learns that vx > vz and vy > vz, yet remains uncertain regarding the ranking between vx

and vy .

4.2 Context Effects

In our model, the presence of other options in the choice context can generate informa-
tion that distorts choice, even if these options are never chosen. The following proposition
summarizes this prediction.

Proposition 2. Let vx , vy > vz. If τyz > τxz, there exists ε > 0 such that if τx y < ε,
ρ(y, x |{z})> 1/2.

Proposition 2 says that when an inferior option z is easier to compare to y than to x , the
presence of z in the choice context will distort choice in favor of y if x and y are sufficiently
hard to compare.2⁵ Intuitively, if the DM does not know how x compares to y or z, but
learns that y is in fact better than z, the presence of z can push choice in favor of y – even
when x is strictly better than y . When combined with our theory of comparison complexity

2⁴This analysis assumes that the global precision parameter p <∞. If instead p =∞, we will also have
the prediction that ρ(x , y) = 1.
2⁵In Appendix C, we also consider the analogous result that the addition of a superior option z to the choice

context can bias choice in favor of x if τyz > τxz .
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in the multiattribute domain, the above result rationalizes familiar decoy and asymmetric
dominance effects.

Corollary 2.1. Consider options from X = Rn, with vx =
∑

βk xk and let τx yhave an L1-
complexity representation. Let vx , vy > vz.

(i) If vx = vy , then dL1(x , z)> dL1(y, z) implies ρ(y, x |{z})> 1/2.

(ii) For any value difference ∆ = |vx − vy |, there exists d ∈ R+ such that if dL1(x , y) > d,
there exists z ∈ X with dL1(x , z)> dL1(y, z) such that ρ(y, x |{z})> 1/2.

Part (i) says that if x and y are indifferent, then introducing an inferior phantom option
z that is more similar to y than x distorts choice in favor of y . Part (ii) says this distortion
does not just arise at indifference: if x and y are sufficiently dissimilar relative to their value
difference, there exists a decoy z that distorts choice in favor of y .

Example 1. (Classic decoy effects). Consider a setting where options have two attributes,
where β = (1, 1), and where τx y has an L1 complexity representation. Consider two indif-
ferent choice options x = (1, 2), y = (2, 1), and consider the effect of including a phantom
option on choice shares between x and y .

Case 1: z = (1.8, 0.8). Since dL1(x , z) < dL1(y, z), we have ρ(y, x |{z}) > 0.5. We recover
the classic asymmetric dominance effect: the addition of an option that is dominated by the
target option y but not by the competitor x distorts choice in favor of y .

Case 2: z′ = (1.5, 1.1). We again have dL1(x , z′) < dL1(y, z′), we have ρ(y, x |{z′}) > 0.5.
Here, the model predicts a “good deal" effect – z′ is not dominated by either x or y , but its
proximity to y makes the target option seem like a “good deal" relative to z, whereas its
distance to x prevents the DM from drawing the same inference about the competing option.

Case 3: z′′ = (0.8,0.5). Here, dL1(x , z′′) = dL1(y, z′′), and so Corollary 2.1 implies that
ρ(y, x |{z′′}) = 0.5. That is, the model predicts that the addition of a mutually dominated
option does not affect choice shares.

Comparison to other context-dependence models. Though each of the choice patterns
above can be explained by familiar models, our model is distinct in simultaneously explain-
ing all three. The salience (Bordalo et al., 2013) and focusing models (Kőszegi and Szeidl,
2013) cannot rationalize the decoy effects in Cases 1 and 2. The relative thinking model
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(Bushong et al., 2021), in which the DM weighs a given change along an attribute by less
when there is a larger range of values along that attribute, can rationalize the decoy effect
in Case 1 as a result of option z extending the range of attribute 2 more than attribute 1, but
not Case 2, where z′ has no effect on attribute ranges. The pairwise normalization model
(Landry and Webb, 2021) predicts that z increases the relative of y relative to x whenever
z1/z2 is closer to y1/y2 than it is to x1/x2, and so can rationalize the decoy effects in both
Cases 1 and 2, but also delivers the counterfactual prediction that the addition of a mutu-
ally dominated option z′′ will also distort choice in favor of x . Furthermore, all of these
models are formulated in multi-attribute choice, which means they cannot easily explain
documented decoy effects in lottery choice (Soltani et al., 2012) or other domains. Our
choice framework straightforwardly applies to lottery and intertemporal choice.
We also make an important conceptual distinction from these existing models. In our

model, biased choice does not arise from a behavioral bias, but instead as a rational response
to imperfect comparability. We only expect decoy options to distort choice between x and
y when their binary comparison is challenging. This is consistent with the fact that the
attraction effect is muted when consumers face familiar choice contexts or have clear prior
preferences (Huber et al., 2014) – an empirical phenomenon that is not well-explained by
existing models.

4.3 Biases and Instabilities in Valuation

Consider the classic preference reversal phenomenon in risky choice. Lottery x pays a high
amount with a low probability, while y pays a modest sum with a high probability, e.g.

x : $14 with 28%

y : $4 with 98%

We consistently see that most subjects choose y over x in direct choice between the two,
but state a higher certainty equivalent for x when valuing the two lotteries independently.
A number of explanations for these apparent preference reversals have been put forth in the
literature, such as intransitive preferences or violations of independence (see Seidl (2002)
for a review). Our model makes two simple predictions which together rationalize pref-
erence reversals. First, valuations are systematically biased when options are difficult to
compare to money; and second, some options are easier to compare to money than others.
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4.3.1 Modeling Valuations

To model valuations, we extend our multinomial choice framework as follows. The DM now
faces a finitemenu sequence A1, A2, ..., An ∈A in a choice context C , generates a set of signals
s for each pairwise comparison in A1∪A2∪ ...An∪C and chooses the option from each menu
with the highest posterior expected value, yielding the joint choice frequencies2⁶

ρ((x1, ...xn), (A1, ..., An)|C) = P
� n
⋂

i=1

{s : E[vx i |s]> E[vy |s]∀ y ∈ Ai/{x i}}
�

where ρ((x1, ...xn), (A1, ...,An)|C) records the frequency of choosing x i ∈ Ai for i = 1, ..., n.
We model valuations within this extended choice framework as follows. There is an

option x ∈ X to be valued, and a price list Z = {z1, z2, .., zn} ⊆ X : a set of options for which
the ranking vz1 > vz2 > ... > vzn is unambiguous, i.e. τz iz j = ∞ for all z i, z j ∈ Z . The
DM faces a valuation task (x , Z): a sequence of binary choices between x and each price
in the price list: that is DM faces a menu sequence (A1, ..., An) = ({x , z1}, ..., {x , zn}) given
the choice context Z . Note that this choice procedure corresponds to a multiple price list, a
workhorse procedure for eliciting valuations in experimental economics.
Since the DM perfectly learns the ranking of prices, this choice procedure yields a single

switching point: that is, for any signal realization there is an index R ∈ {1, ..., n, n+ 1} for
which the DM chooses the option x ∈ Ak for all k ≥ R, and the price zk ∈ Ak for all k < R.
Just as the switching point in a multiple price list is taken to reveal the subject’s valuation of
x , this switching point reveals where the DM believes the object x falls within the ranking
of prices. We will be interested in the distribution over these switching points induced by
ρ((x1, ...xn), (A1, ..., An)|Z), which we denote by R(x , Z).2⁷
For notational convenience, let vk = vzk and τk = τxzk denote the value of zk and ease

of comparison between x and zk, respectively.

Constant comparability. Our model predicts that when x is hard to compare to prices,
valuations will exhibit a “pull-to-center” effect – they will in general be systematically bi-
ased towards the middle of the price list. To illustrate, consider a case where the ease of
comparison between x and prices τk is constant in k. For ease of exposition, assume that x

2⁶As before, this formulation for choice probabilities holds when ties in posterior expectations occur with
probability 0. In the case of ties, we assume a symmetric tiebreaking rule; See Appendix B.3 for details.
2⁷Given a signal s, the DM’s posterior switching point R is computed by calculating E[vx |s] and E[v j |s] for

all j ∈ {1,2, ..., n}, and finding the unique index R such that E[vx |s] < E[vR−1|s] and E[vx |s] > E[vR|s] (in
the case of ties, we assume the DM randomizes as described in Appendix B.3).
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is not indifferent to any price in Z , so that there is a true ranking R∗(x , Z) ∈ {1, ..., n, n+1}
such that vx > vk if k ≥ R∗(x , Z) and vx < vk otherwise.

Proposition 3. Given a valuation task (x , Z), where τk = τ and vx ̸= vk for all k = 1, ..., n,
we have the following:

(i) If τ= 0, E[R(x , Z)] = (n+ 2)/2.

(ii) As τ→∞, R(x , Z) converges in distribution to δR∗(x ,Z).

Proposition 3 says that i) when x is incomparable to prices, valuations are compressed
to the middle of the price list, and that ii) as x becomes increasingly comparable to prices,
valuations converge to the truth. Intuitively, if τ = 0, the DM receives no information on
where x falls within the ranking of prices – her posterior puts equal probability on each
possible ranking, and so she values x in the middle of the price list. However, as τ increases,
the DM’s valuation of x becomes increasingly accurate, and eventually converges to the
truth. When combined with our theory of comparison complexity, this “pull-to-center” force
can rationalize documented preference reversals and apparent biases in valuation.

4.3.2 Classic Preference Reversals

Lottery Choice. Consider the lottery domain, where vx =
∑

w u(w) fx(w) for u strictly in-
creasing, and where τx y has a CDF-complexity representation τC DF

x y = H
�

EU(x)−EU(y)
dC DF (x ,y)

�

for
which H(1) =∞; that is, the DM perfectly learns the ranking between two lotteries that
have a dominance relationship. We show how our how our model can rationalize docu-
mented preference reversals.

Example 2. (Classic preference reversals). Suppose the DM is weakly risk-averse, i.e. u is
concave, and consider the lotteries

x : $14 with 28%

y : $4 with 98%

First, consider a DM tasked with choosing directly between these two lotteries. Since any
risk-averse DM weakly prefers y to x , our choice model predicts that ρ(y, x) ≥ 1/2: the
DM is more likely to choose y over x in direct choice.
Now consider a DM tasked with producing a certainty equivalent for each lottery. Note

that under τC DF
x y , the two lotteries differ in their ease of comparison to money: x , which is
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more dissimilar to a certain payment than y , is harder to compare to money than y . This
differential ease of comparison, in conjunction with the pull-to-center effects described in
Proposition 3, result in distortions that can cause x to be valued higher than y .
Formally, the DM faces a valuation task (l, Z), where l = (wl , pl) is a simple lottery

that pays out wl > 0 with probability pl ∈ (0,1), to be valued against a price list Z =
{z1, ..., zn}, where each zk = (wk, 1) is a degenerate simple lottery. We make restrictions on
Z that are commonly employed in the experimental literature: call a price list Z adapted
to a simple lottery l if Z is composed of composed of equal-sized steps, i.e. wk − wk+1 is
constant in k, and also contains the minimal and maximal support points of l, i.e. wn = 0

and w1 = wl . Recall that each valuation task (l, Z) produces a distribution of switching
points R(l, Z). Let C E(l, Z) = 1/2

�

wR(l,Z)−1 +wR(l,Z)

�

denote the distribution over the DM’s
certainty equivalents obtained from assigning each realized switching point to a valuation
at the midpoint of the adjacent prices.2⁸
Figure 6 plots the expected certainty equivalents E[C E(l, Z)] for simple lotteries l with

the same expected value as x and y , simulated from our model with CRRA preferences.

Figure 6: Simulated average certainty equivalents E[C E(l, Z)] for simple lotteries l = (wl , pl) with expected
value equal to that of x = (14, 0.28) as a function of pl . In these simulations, Z is adapted to l, and we set
|Z | = 15. τx y has a CDF-complexity representation parameterized by u(w) = wα and H(r) = (Φ−1(G(r)))2,
for G given by (1) with κ= 0,γ= 0.75. Priors are distributed Q ∼ U[0, 1].

2⁸Since we assumed H(1), it is never the case that R(l, z) = n+ 1 or R(l, z) = 1, i.e. the DM never values
the lottery below 0, or above the maximal price, and so C E(l, Z) is well-defined.
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First consider the certainty equivalents of x and y , which correspond to the intersection
of each curve with the vertical dashed lines in Figure 6: although y is weakly preferred to
x since the DM is risk-averse, the model predicts that x is valued higher than y on average.
The intuition is as follows: since the low-probability lottery x is dissimilar to and therefore
difficult to compare to money, its valuation is pulled to the midpoint of the undominated
range of prices [0, wx], and so the valuation of x is inflated. On the other hand, since the
high-probability lottery is easier to compare to money its valuation will exhibit a lower level
of bias and if anything will be distorted downwards towards the midpoint of undominated
prices [0, w y]. As such, our model rationalizes preference reversals, where ρ(y, x) ≥ 1/2

and yet E[C E(x , Z)]> E[C E(y, Z)].
The entirety of the figure traces our model’s predictions for preference reversals in gen-

eral: for x ′ with a modest payoff probability and y ′ with a high payoff probability, we will
have E[C E(x ′, Z)]> E[C E(y ′, Z)] for with a high payoff probability — despite the fact that
y ′ is in truth preferred to x ′, and so ρ(y ′, x ′)≥ 1/2.

In our model, preference reversals result from the differential ease of comparing lotteries
to money. This suggests that one may be able to eliminate or even reverse the direction of
these effects by changing the numeraire: the currency against which the lotteries are valued.

Example 3. (Reversals with probability equivalents). For instance, consider the same lot-
teries x and y from Example 2, and imagine that instead of valuing x and y in terms of
money, the DM is asked to assess the probability-equivalents of the lotteries: the probability
p that makes the lottery z = ($15, p) indifferent to x and y .

x : $14 with 28%

y : $4 with 98%

Whereas y was easier to compare to money, x is now easier to compare to the new
numeraire. Our model predicts that this change in numeraire reverses the distortion in the
valuation of x and y .
Formally, rather than valuing a simple lottery l = (wl , pl) against a price list, the decision-

maker now values l against a probability list Z = (z1, ..., zk), where each zk = (15, pk).2⁹
Analogous to the restriction made in Example 2, call a probability list Z adapted to l if pk−
pk+1 is constant in k and p1 = pl , pn = 0. Analogous to before, let PE(l, Z) = 1/2[pR(l,Z)−1+

2⁹We assume that wl ≤ 15.
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pR(l,Z)] denote the distribution over the DM’s probability equivalents, obtained from assign-
ing each switching point to a probability equivalent at the midpoint of the adjacent proba-
bilities.
Figure 7 plots the expected probability equivalents E[PE(l, Z)], simulated from our

model with CRRA preferences, for the same set of lotteries as in Figure 6: simple lotteries
l with the same expected value as x and y ,
Consider the probability equivalents of x and y , given by the intersection of each curve

with the vertical dashed lines in Figure 7. Whereas x was valued higher than y on average
when valued in terms of certainty equivalents, our model predicts that the distortion in
valuations reverses when the lotteries are valued in terms of probability equivalents: we
have E[PE(y, Z)]> E[PE(x , Z)]. Intuitively, y is hard to compare to the zk, so its valuation
is compressed upward towards the middle of the range of undominated probabilities [0, py],
whereas x is easy to compare to zk, and so its valuation will be close to the truth.

Figure 7: Simulated average probability equivalents E[PE(l, Z)] for simple lotteries l = (wl , pl)with expected
value equal to that of x = (14,0.28) as a function of pl . In these simulations, Z is adapted to l and we set
|Z | = 15. τx y has a CDF-complexity representation parameterized by u(w) = wα and H(r) = (Φ−1(G(r)))2,
for G given by (1) with κ= 0,γ= 0.75. Priors are distributed Q ∼ U[0,1].

Importantly, even though valuation using probability equivalents reverses the distor-
tions responsible for preference reversals in this example, our model does not predict that
valuations using probability equivalents are systematically more accurate than certainty
equivalents. To see this, focus on the predictions of the model in the case of risk neutral
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preferences. Here, both methods of valuation are subject to bias: x and y are indifferent in
truth, and yet we have E[C E(x , Z)]> E[C E(y, Z)] and E[PE(x , Z)]< E[PE(y, Z)].

Intertemporal Choice. The logic above, which shows the differential ease of comparing
options to the numeraire can rationalize preference reversals, is not limited to risky choice.
Consider the following example of a preference reversal in intertemporal choice, docu-

mented by Tversky et al. (1990) using choice vignettes:

x : $3550 in 10 years

y : $1600 in 1.5 years

The authors find that in direct choice, a majority of subjects choose the earlier payment y ,
but that when tasked with valuing the options in terms of money today, most subjects value
the more delayed payment x higher than y .
In Appendix B.5, we show how our model applied to the intertemporal domain rational-

izes such preference reversals as the consequence of y being more similar to and therefore
easier to compare to money today than x .

4.3.3 Biases in Valuation of Risk and Time

The pattern of biased valuation presented in Figure 6 also generates apparent probability-
weighting in certainty equivalents. To see why this is true, suppose we have a risk-neutral
agent and we elicit certainty equivalents on simple lotteries to measure the agent’s proba-
bility weighting function. Previously, we argued that low-probability lotteries will be over-
valued and high-probability lotteries will be under-valued. Thus, if we estimated the agent’s
probability weighting function based on her valuations, we would conclude the agent is
overweighting small probabilities and underweighting large probabilities.
To illustrate this, consider the standard paradigm used to estimate the probability weight-

ing function, in which the DM provides certainty equivalents of simple lotteries l = (w, pl).
Figure 8 plots the predicted normalized certainty equivalents E[C E(l, Z)]/w as a function
of pl for a DM with CRRA preferences. The weights implied by these certainty equivalents
reproduce the familiar inverse S-shaped pattern of probability weighting.
In our model, this apparent probability weighting does not reflect a true preference, but

instead a bias resulting from the complexity of comparing a lottery to a price list. This is
important for two reasons. First, we do not predict probability weighting in binary choice,
which is consistent with evidence that the inverse S-shaped probability weighting func-

33



Figure 8: Simulated normalized average certainty equivalents E[C E(l, Z)]/w for simple lotteries l = (w, pl)
as a function of pl . In these simulations, Z is adapted to l and we set |Z | = 15. τx y has a CDF-complexity
representation parameterized by u(w) = wα and H(r) = (Φ−1(G(r)))2, for G given by (1) with κ= 0,γ= 0.75.
Priors are distributed Q ∼ U[0,1].

tion is far more prominent in valuation tasks than in direct choice (Harbaugh et al., 2010;
Bouchouicha et al., 2023). Second, we predict that these seeming patterns of probability
weighting will be highly sensitive to the units against which the lotteries are valued. In par-
ticular, we predict that it is possible to reverse the pattern of apparent probability-weighting
with an appropriate choice of price list currency.
Consider an alternative paradigm for estimating the probability weighting function, in

which the DM provides probability equivalents of a certain payout: the probability p that
makes the lottery z = (w, p) indifferent to a certain payment c = (wc, 1). Tracing out the
probability equivalents p as a function of the normalized certain payments wc/w should
— assuming no complexity-driven distortions — recover the same preference information
as the certainty equivalents discussed above. Figure 9 plots the predicted relationship be-
tween the certain payment amount wc/w (y-axis) and the associated probability equivalent
E[PE(c, Z)] (x-axis), in which the certain payment c = (wc, 1) is valued against a proba-
bility list Z = (z1, ..., zk), for zk = (w, pk). Here we see a reversal of the inverse S-shaped
pattern: the difficulty of comparing sure payments against the numeraire good causes proba-
bility equivalents to be compressed towards the middle of the price list, generating apparent
underweighting of small probabilities and overweighting over large probabilities. This is an
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empirical prediction which could be tested experimentally.

Figure 9: Relationship between simulated average probability equivalents E[PE(c, Z)] for a certain payment
c = (wc , pl) and the normalized payment amount wc/w. In these simulations, Z is adapted to l and we set
|Z | = 15. τx y has a CDF-complexity representation parameterized by u(w) = wα and H(r) = (Φ−1(G(r)))2,
for G given by (1) with κ= 0,γ= 0.75. Priors are distributed Q ∼ U[0,1].

Importantly, we do not claim that distorted probability weighting functions do not exist
– instead, our model offers a potential explanation for why canonical valuation tasks over
simple lotteries may overstate the degree of any true probability weighting.
We can consider a similar exercise in the context of valuing intertemporal payment

streams, where we see that complexity-driven noise generates apparent hyperbolic discount-
ing even in the absence of hyperbolicity in preferences. We work out this exercise in full in
Appendix B.6, but the logic is much the same as probability-weighting. In traditional price-
list elicitations, payments dated close to the present will be undervalued, as valuations are
pulled down towards the center of the price list; and payments further in the future will be
overvalued, as valuations are pulled up towards the center of the price list. This produces
a pattern of complexity-driven hyperbolic discounting, which is consistent with evidence
from (Enke et al., 2023). We further predict that this pattern persists when front-end de-
lays are incorporated, since the apparent hyperbolicity predicted by our model is not driven
by a preference for the present. This is also supported by evidence from (Enke et al., 2023).
Importantly, our model predicts that these distortions are not generic, but instead arise

specifically from the difficulty of comparing delayed payments to the numeraire good of

35



money today. As with lotteries, our model predicts that we can reverse the pattern of hy-
perbolic discounting by instead eliciting valuations in time-equivalents rather than money-
equivalents, as discussed in B.6. Once again, we do not claim that real present-biased pref-
erences do not exist; rather, our model suggests a mechanism for why canonical valuation
tasks may overstate the true degree of hyperbolic discounting.

5 Conclusion

This paper presents a new theory of comparison-based complexity in multiattribute, lottery,
and intertemporal choice, in which comparisons are easier when two options are more simi-
lar along their features (holding value difference fixed); and easiest when two options have
a dominance relationship. We provide experimental evidence that our measures of com-
parison complexity predict choice errors, choice inconsistency, and cognitive uncertainty.
Finally, we show how comparison complexity can generate systematically biased choices
and valuations. In particular, our choice model rationalizes familiar context effects like the
decoy and asymmetric dominance; classic preference reversals; and probability weighting
and hyperbolic discounting in risk and time respectively. Furthermore, our model predicts
that it is possible to reverse the standard patterns of probability weighting and hyperbolic
discounting, depending on how the researcher chooses the currency against which options
are valued.
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APPENDIX

A Appendix: Tables and Figures

Table 2: Complexity Responses vs. L1 Ratio

Dependent Variable:
Error Rate

Dependent Variable:
Inconsistency Rate

Dependent Variable:
CU

(1) (2) (3) (4) (5) (6)
L1 Ratio −0.26∗∗∗ −0.26∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.12∗∗∗ −0.12∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01)
Global Value Difference 0.00 −0.01 −0.00

(0.00) (0.01) (0.00)
(Intercept) 0.32∗∗∗ 0.32∗∗∗ 0.26∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.27∗∗∗

(0.01) (0.02) (0.01) (0.03) (0.00) (0.01)
R2 0.32 0.32 0.03 0.03 0.30 0.31
Adj. R2 0.32 0.32 0.03 0.03 0.30 0.31
Num. obs. 662 662 4880 4880 662 662
OLS Estimates. Standard errors (in parentheses) are robust. “L1 Ratio" and “Global Value Difference" are the L1 ratio and
the monetary value difference for each choice problem.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table 3: Complexity Responses vs. L1 Ratio, No Calculator Users

Dependent Variable:
Error Rate

Dependent Variable:
Inconsistency Rate

Dependent Variable:
CU

(1) (2) (3) (4) (5) (6)
L1 Ratio −0.30∗∗∗ −0.29∗∗∗ −0.20∗∗∗ −0.20∗∗∗ −0.12∗∗∗ −0.12∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01)
Global Value Difference −0.00 −0.01 −0.00∗

(0.00) (0.01) (0.00)
(Intercept) 0.36∗∗∗ 0.36∗∗∗ 0.28∗∗∗ 0.32∗∗∗ 0.26∗∗∗ 0.28∗∗∗

(0.01) (0.03) (0.01) (0.03) (0.01) (0.01)
R2 0.32 0.32 0.03 0.03 0.30 0.30
Adj. R2 0.32 0.32 0.03 0.03 0.30 0.30
Num. obs. 662 662 4020 4020 662 662
OLS Estimates. Standard errors (in parentheses) are robust. “L1 Ratio" and “Global Value Difference" are the L1 ratio and
the monetary value difference for each choice problem.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table 4: Structural Estimates: Multiattribute Choice

BGS Focus RT L1-C, 2P L1-C, 3P
Parameter Estimates
δ 1
θ 0
ω 0.84
ξ 1.62
κ 0.09 0.04
γ 2.36 0.86
ψ 0.55
η 0.37 0.37 1.54

R2 0.001 0.001 0.345 0.289 0.32
“BGS", “Focus", and “RT" refer to the Salience, Focusing, and Relative Thinking models described in Ap-
pendix E.1. “L1-C, 2P" and “L1-C, 3P" refer to the 2 and 3 parameter L1-Complexity models described in
Appendix E.1.

Table 5: Predicted vs. Actual Choice Rates, Multiattribute Choice

Dependent Variable:
Choice Rates

(1) (2) (3) (4) (5)
BRS Choice Rates 0.82∗∗∗ 0.58∗∗∗ 0.54∗∗∗

(0.05) (0.07) (0.07)
L1 Choice Rates, 2 param. 0.81∗∗∗ 0.41∗∗∗

(0.06) (0.07)
L1 Choice Rates, 3 param. 1.00∗∗∗ 0.57∗∗∗

(0.06) (0.07)
(Intercept) 0.16∗∗∗ 0.17∗∗ 0.01 0.00 −0.09

(0.05) (0.05) (0.05) (0.06) (0.05)
R2 0.35 0.29 0.39 0.32 0.41
Adj. R2 0.34 0.29 0.39 0.32 0.41
Num. obs. 662 662 662 662 662
OLS Estimates. Standard errors (in parentheses) are robust. “BRS Choice Rates", “L1 Choice Rates, 2
param.", and “L1 Choice Rates, 3 param." refer to the predicted choice rates of the structurally estimated
relative thinking model and L1 models, respectively.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table 6: Complexity Responses vs. CPF Ratio

Dependent Variable:
Error Rate

Dependent Variable:
Inconsistency Rate

Dependent Variable:
CU

(1) (2) (3) (4) (5) (6)
Global CPF Ratio −0.51∗∗∗ −0.51∗∗∗ −0.20∗∗∗ −0.17∗∗∗ −0.07∗∗∗ −0.07∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
Global Value Difference −0.00 −0.01∗∗∗ −0.00

(0.00) (0.00) (0.00)
(Intercept) 0.55∗∗∗ 0.55∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.15∗∗∗ 0.15∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
R2 0.60 0.60 0.02 0.03 0.22 0.23
Adj. R2 0.59 0.59 0.02 0.03 0.22 0.22
Num. obs. 1100 1100 16580 16580 1100 1100
OLS estimates. Standard errors (in parentheses) are robust. “Global CPF" Ratio" and “Global Value Difference" are the representative-
agent CPF ratio and value difference for each choice problem, computed using the value of δ estimated in the Exponential Discounting
model described in Appendix E.2.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table 7: Individual-Level Error Rates vs. CPF Ratio

Dependent Variable:
Binary Error (Indiv. δ̂)

(1) (2) (3) (4)
Global CPF Ratio −0.18∗∗∗ −0.17∗∗∗

(0.01) (0.01)
Indiv. CPF Ratio −0.38∗∗∗ −0.34∗∗∗

(0.01) (0.01)
Indiv. Value Difference −0.01∗∗∗ −0.01∗∗∗

(0.00) (0.00)
(Intercept) 0.25∗∗∗ 0.31∗∗∗ 0.40∗∗∗ 0.40∗∗∗

(0.00) (0.01) (0.01) (0.01)
R2 0.02 0.06 0.10 0.11
Adj. R2 0.02 0.06 0.10 0.11
Num. obs. 41450 41450 41450 41450
OLS estimates. Standard errors (in parentheses) are robust. “Global CPF" Ratio" is the
representative-agent CPF ratio for each subject-choice problem, computed using the value of δ es-
timated in the Exponential Discounting model described in Appendix E.2. “Indiv. CPF" Ratio" and
“Indiv. Value Difference" are the individual-level CPF ratio and value difference for each subject-
choice problem, computed using the individual-level δi estimates under the same model.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table 8: Structural Estimates: Intertemporal Choice

EDU HDU CPF-C
Parameter Estimates
δ 0.95 0.96
υ 0.16
ζ 0.12
κ 0.03
γ 0.85
η 0.35 0.43

R2 0.75 0.78 0.88
“EDU", “HDU", and “CPF-C" refer to the Exponential Discounting, Hy-
perbolic Discounting, and CPF Complexity models described in Ap-
pendix E.2. For these estimates, each time period is 24 days.

Table 9: Complexity Responses vs. CDF Ratio

Dependent Variable:
Error Rate

Dependent Variable:
Inconsistency Rate

Dependent Variable:
CU

(1) (2) (3) (4) (5) (6)
Global CDF Ratio −0.32∗∗∗ −0.28∗∗∗ −0.10∗∗∗ −0.11∗∗∗ −0.19∗∗∗ −0.21∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Global Value Difference −0.01∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00)
(Intercept) 0.48∗∗∗ 0.51∗∗∗ 0.28∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.22∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
R2 0.45 0.47 0.10 0.11 0.31 0.35
Adj. R2 0.45 0.47 0.10 0.11 0.31 0.35
Num. obs. 10923 10923 10423 10423 500 500
OLS estimates. Standard errors (in parentheses) are robust. “Global CDF" Ratio" and “Global Value Difference" are the representative-
agent CDF ratio and value difference for each choice problem, computed using the value of α estimated in the Expected Utility model
described in Appendix E.3.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Table 10: Individual-Level Error Rates vs. CDF Ratio

Dependent Variable:
Binary Error (Indiv. α̂)

(1) (2) (3) (4)
Global CDF Ratio −0.43∗∗∗ −0.40∗∗∗

(0.01) (0.01)
Indiv. CDF Ratio −0.37∗∗∗ −0.35∗∗∗

(0.01) (0.01)
Indiv. Value Difference 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)
(Intercept) 0.59∗∗∗ 0.53∗∗∗ 0.57∗∗∗ 0.51∗∗∗

(0.01) (0.01) (0.01) (0.01)
R2 0.08 0.09 0.06 0.08
Adj. R2 0.08 0.09 0.06 0.08
Num. obs. 12500 12500 12500 12500
OLS estimates. Standard errors (in parentheses) are robust. “Global CDF" Ratio" is the
representative-agent CDF ratio for each subject-choice problem, computed using the value of α
estimated in the Expected Utility model described in Appendix E.3. “Indiv. CDF" Ratio" and “Indiv.
Value Difference" are the individual-level CPF ratio and value difference for each subject-choice
problem, computed using the individual-level αi estimates under the same model.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

Table 11: Structural Estimates: Lottery Choice

EU RDEU CPT EV CDF-C EU CDF-C
Parameter Estimates
α 0.85 0.83 0.75 0.59
β 0.79 0.78
λ 0.79
χ 1.06
ν 0.83
κ 0.15 0.15
γ 0.77 0.71
η 0.22 0.24 0.33

R2 0.55 0.56 0.59 0.66 0.73
“EU", “RDEU", and “CPT" refer to the Expected Utility, Reference-Dependent Expected Utility, and Cu-
mulative Prospect Theory models described in Appendix E.3. “EV CDF-C" and “EU CDF-C" refer to the
risk-neutral and expected utility CDF complexity models described in Appendix E.3.
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Figure 10: Binscatter of individual-level error dummies against individual-level CPF ratios. A choice is coded
as an “error” if the individual chooses the lower-value option, according to the best-fit discount function
estimated on their 50 experimental choices. We use the same 2-parameter structural model as in estimating
global temporal preferences, which features exponential discounting and logit noise. The estimating equation
is provided in Appendix E.2

Figure 11: Binscatter of individual-level error dummies against individual-level CDF ratios. Analogously to
time, a choice is coded as an “error” if the individual chooses the lower-value option, according to the utility
function estimated on their 50 experimental choices. We use a 2-parameter structural model of risk prefer-
ences, which features symmetric CRRA utility and logit noise. The estimating equation is provided in Appendix
E.3; we employ the parameter restriction αi ≥ 0.35 in our estimations.
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B Appendix: Additional Theoretical Results

B.1 Axiomatic Characterizations

B.1.1 Linear Multiattribute Choice

We state our characterization theorem in the case where n≥ 2. The n= 2 case requires an
additional axiom. Let x{k} = x{k}0⃗.

M6. Exchangeability: If ρ(x{i}, x ′{ j}) = 1/2 and ρ(x{ j}, x ′{i}) = 1/2, with xk = x ′k = 0 for
all k ̸= i, j, then ρ(x , 0) = ρ(x ′, 0).

Exchangeability states that swapping attribute labels (adjusting for attribute weights)
will not affect choice, and arises from the fact in our theory, the similarity in the denomi-
nator is defined over the same value-transformed attributes that govern preferences.

Theorem 2. Suppose that all attributes are non-null. A binary choice rule ρ satisfies M1–M6
iff it has an L1-complexity representation (G,β). If n > 2, ρ satisfies M1–M5 iff it has an L1

complexity representation (G,β). Furthermore, if ρ also has an L1-complexity representation
(G′,β ′) then G′ = G and there exists C > 0 such that β ′ = Cβ .

B.1.2 Additively Separable Multiattribute Choice

We consider an extendedmultiattribute domain where each option in X ≡ X1×X2×...×Xn is
defined on n attribute dimensions, where each X i is a connected and separable topological
space. Preferences are additively separable in each attribute, where the value of each x

is given by U(x) =
∑

k uk(xk) for uk continuous. Say that uk is non-trivial if there exist
xk, x ′k ∈ Xk such that uk(xk) ̸= uk(x ′k). We propose that the ease of comparison in this
domain is governed by the following representation:

Definition 5. τx y has an additively separable L1-complexity representation if there exist con-
tinuous, non-trivial ui : X i → R such that for U(x) =

∑

k uk(xk) and dL1(x , y) =
∑

k |uk(xk)−
uk(yk)|, whenever dL1(x , y) ̸= 0

τx y = H
� |U(x)− U(y)|

dL1(x , y)

�

for H continuous, increasing with H(0) = 0, and τx y = 0 otherwise. Similarly, a binary choice
rule ρ has an additively separable L1-complexity representation if there exist continuous, non-
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trivial ui : X i → R such that whenever dL1(x , y) ̸= 0,

ρ(x , y) = G
�

U(x)− U(y)
dL1(x , y)

�

.

for G continuous, strictly increasing, and ρ(x , y) = 1/2 otherwise.

Note that this representation for τx y satisfies the same principles of similarity, domi-
nance, and simplification as the linear representation introduced in Section 2.1, and the cor-
responding representation for ρ(x , y) satisfies axioms M1 and M3–M5. We provide an ax-
iomatic characterization for this representation, in which Linearity is relaxed and replaced
with two axioms.
First some definitions. For E ⊆ I , let xE y denote the option that replaces the value of

option y along attributes k ∈ E with xk. Say that comparisons (x , y), (w, z) ∈ D, are con-
gruent if for all i ∈ I , ρ(x{i} y, y) ≥ 1/2 and ρ(w{i}z, z) ≥ 1/2 or ρ(x{i} y, y) ≤ 1/2 and
ρ(w{i}z, z)≤ 1/2. That is, if (x , y) and (w, z) are congruent, the advantages and disadvan-
tages in the two comparisons are located in the same attributes.

M7. Separability: ρ(xEz, yEz) = ρ(xEz′, yEz′) for all x , y, z, z′ ∈ X , E ⊆ I .

M8. Tradeoff Congruence. Suppose that (x , y) is congruent to (y, z), andρ(x , y),ρ(y, z)≥
1/2. Then ρ(x , z)≤max{ρ(x , y),ρ(y, z)}.

Separability is the stochastic analog of the familiar coordinate independence axiom in
deterministic choice, which says that xEz ⪰ yEz =⇒ xEz′ ⪰ yEz′ for all E ⊆ I , x , y, z, z′ ∈ X .
The interpretation of Tradeoff Congruence is as follows: consider the attribute-wise trade-
offs involved in comparing z to y and x to y , where x is in fact better than y , and y is
better than z. If replacing y with x in the first comparison and replacing y with z in the
second only increases the magnitude of these tradeoffs – i.e. if (x , y) and (y, z) are congru-
ent – then (x , z) cannot be an easier comparison than both of the intermediate comparisons
(x , y) and (y, z). Intuitively, neither of these replacements reduce the size of the tradeoffs
the DM must contend with, and so as revealed by choice probabilities, the DM cannot find
the comparison (x , z) easier than both (x , y) and (y, z).
The following result states that Continuity, Moderate Transitivity, Dominance, Simplifi-

cation, Separability, and Tradeoff Congruence characterize the additively separable repre-
sentation, and that its primitives are identified from choice data.

Theorem 3. Suppose that n > 2 and that all attributes are non-null. Then a binary choice
rule ρ satisfies M1,M3–M5, M7–M8 if and only if it has an additively separable L1-complexity
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representation. Morever, suppose that at least two attributes are non-null. If ρ has additively
separable L1 complexity representations ((ui)ni=1, G) and ((u′i)

n
i=1, G′), then there exists C > 0,

bi ∈ R such that u′i = Cui + bi for all i, and G′ = G.

B.1.3 Lottery Choice

Consider the lottery choice domain, where X is the set of finite state lotteries over R. Note
that the CDF-complexity representation for τx y implies the following binary choice repre-
sentation:

Definition 6. A binary choice rule ρ has a CDF-Complexity representation if there exists u :

R→ R strictly increasing such that

ρ(x , y) = G
�

EU(x)− EU(y)
dC DF(x , y)

�

for G continuous, strictly increasing.

Let ≥ denote the partial order X corresponding to first-order stochastic dominance. Let
Sx = {w ∈ R : fx(w)> 0} denote the support of lottery x . Consider the following axioms:

L1. Continuity: ρ(x , y) is continuous on its domain.

L2. Independence: ρ(x , y) = ρ(λx + (1−λ)z,λy + (1−λ)z) for λ ∈ (0, 1).

L3. Moderate Stochastic Transitivity: If ρ(x , y) ≥ 1/2, ρ(y, z) ≥ 1/2, then either
ρ(x , z)>min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(x , y) = ρ(y, z).

L4. Dominance: x ≥ y , then ρ(x , y)≥ ρ(w, z) for any w, z ∈ L(S), where the inequality
is strict if w ̸≥ z.

L5. Simplification. For any x , y ∈ X and w∗ ∈ Sx ∪Sy , consider x ′ with support in Sx ∪Sy

satisfying Fx ′(w∗) = Fy(w∗), and Fx ′(w) ̸= Fx(w) for at most one w ∈ Sx ∪ Sy/{w∗}. If
ρ(x , y)≥ 1/2 and ρ(x ′, x) = 1/2, then ρ(x ′, y)≥ ρ(x , y).

Axioms L1–L4 are the direct analogs of M1–M4 in the characterization of L1 complexity.
Axiom L5 says that concentrating value differences between lotteries in the same region
of the distribution of the lotteries makes them easier to compare, and is an analog of the
Simplification property (AxiomM5) for L1 complexity. Axioms L1–L5 exhaust the behavioral
content of CDF complexity.
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Theorem 4. A binary choice rule ρ satisfies L1-L5 if and only if it has a CDF-Complexity
representation (G, u). Moreover, if (G′, u′) also represents ρ, then G′ = G and there exists
C > 0, b ∈ R such that u′ = Cu+ b.

B.1.4 Intertemporal Choice

Consider the intertemporal choice domain, where X is the set of finite payoff streams. For
a payoff flow x ∈ X , let Tx = {t : mx(t) ̸= 0} denote the support of x , and for x , y ∈ X let
Tx y = Tx∪Ty∪{0,∞} denote the joint support of x and y . We consider the following exten-
sion of our CPF complexity measure to general time discounting. Call d : R+∪{+∞}→ R+

a discount function if d is strictly decreasing and d(∞) = 0. Wewill consider discounted util-
ity preferences of the form DU(x) =

∑

t d(t)mx(t). Note that d need not be continuous, and
so our generalization can capture discontinuous time preferences such as quasi-hyperbolic
discounting. Recall that Mx(t) =

∑

t ′≤t mx(t) is the cumulative payoff function of a payoff
flow x .

Definition 7. τx y has a generalized CPF complexity representation if there exists a discount
function d such that

ρ(x , y) = G
�

DU(x)− DU(y)
dC PF(x , y)

�

for H continuous, strictly increasing with H(0) = 0, where dC PF(x , y) =
∑n−1

k=0 |Mx(tk) −
My(tk)| · (d(tk) − d(tk+1)) for t0 < t1 < ... < tn enumerating Tx y is the generalized CPF
distance. Similarly, a binary choice rule ρ has a generalized CPF complexity representation if

ρ(x , y) = G
�

DU(x)− DU(y)
dC PF(x , y)

�

for some continuous, strictly increasing G.

Note that if d is differentiable, dC PF can be more conveniently rewritten as dC PF(x , y) =
∫∞

0
|Mx(t)−My(t)| · (−d ′(t)) d t. In the case where d(t) = δt , generalized CPF complexity

reduces to Definition 4. Let ≥ denote the partial order X corresponding to temporal domi-
nance (i.e., x ≥ y iff at every time t ∈ R+∪{+∞}, Mx(t)≥ MY (t)). Consider the following
axioms:

T1. Continuity: ρ(x , y) is continuous on its domain.

T2. Linearity: ρ(x , y) = ρ(λx + (1−λ)z,λy + (1−λ)z) for λ ∈ (0,1).
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T3. Moderate Stochastic Transitivity: If ρ(x , y) ≥ 1/2, ρ(y, z) ≥ 1/2, then either
ρ(x , z)>min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(x , y) = ρ(y, z).

T4. Dominance: x ≥ y , then ρ(x , y) ≥ ρ(w, z) for any w, z ∈ X , where the inequality is
strict if w ̸≥ z.

T5. Simplification. For any x , y ∈ X and t∗ ∈ Tx ∪Ty , consider x ′ with support in Tx ∪Ty

satisfying Mx ′(t∗) = My(t∗), and Mx ′(t) ̸= Mx(t) for at most one t ∈ Tx ∪ Ty/{t∗}. If
ρ(x , y)≥ 1/2 and ρ(x ′, x) = 1/2, then ρ(x ′, y)≥ ρ(x , y).

Axioms T1–T4 are the direct analogs of M1–M4 in the characterization of L1 complex-
ity. Axiom T5 says that concentrating value differences between payoff flows in the same
region of time makes them easier to compare, and is an analog of the Simplification prop-
erty (Axiom M5) for L1 complexity. Axioms L1–L5 exhaust the behavioral content of CPF
complexity.

Theorem 5. A binary choice rule ρ satisfies T1 – T5 iff it has a generalized CPF-Complexity
Representation (G, d). Moreover, if ρ is also represented by (G′, d ′), then G′ = G, and there
exists C > 0 such that d ′ = Cd.

To characterize CPF complexity with exponential discounting preferences, an additional
standard stationarity axiom is needed

T6. Stationarity. If ρ(x , y) > 1/2, then for x ′, y ′, k > 0 such that mx ′(t) = mx(t − k),
my ′(t) = my(t−k) for all t ≥ k and mx ′(t) = my ′(t) = 0 for all t < k, ρ(x ′, y ′)≥ 1/2.

B.2 Relationship between CPF and L1 Complexity

CPF complexity is equivalent to L1 complexity when applied to the common attribute repre-
sentation of payoff flows that maximizes the ease of comparison according to L1 complexity.
In what follows, we will restrict attention to positively-valued payoff flows; i.e. x ∈ X such
that mx ≥ 0.
Consider a common attribute representation of payoff flows (x , y) in which the at-

tributes are the discounted-delays of payoffs in (x , y), weighted by the payoff amount at
each delay. Formally, let B(x , y) denote the set of joint payoff functions b : R+∪{+∞}×R+∪
{+∞}→ R that map joint delays of x and y into payoff amounts, where b(∞,∞) = 0 and
where mx(t) =

∑

t y
b(t, t y) and my(t) =

∑

tx
b(t x , t) for all t <∞; that is, the marginal

payoff functions induced by b agree with the payoff functions of x and y . For each attribute
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representation given by b ∈ B(x , y), the ease of comparison under L1 complexity is given
by

τL1
x y(b)≡ H

� |
∑

tx ,t y
b(t x , t y)(d(t x)− d(t y)|

∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|

�

= H

�

|DU(x)− DU(y)|
∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|

�

.

The following proposition states that the attribute structure g that maximizes the ease of
comparison according to τL1

x y(b) gives rise to the CPF complexity representation.

Proposition 4. For positively-valued payoff flows x , y , we have max
b∈B(x ,y)

τL1
x y(b) = H

�

DU(x)−DU(y)
dC PF (x ,y)

�

,

where dC PF is the generalized CPF distance.

B.3 Tiebreaking in Multinomial Choice Extension

Fix any choice problem (A, C). In the event that a signal s induces a tie among options that
maximize posterior expected value, we assume a symmetric tiebreaking rule in which the
DM randomizes between the maximal options. In particular, for any option x ∈ A and signal
realization s, let N (x , s) ≡ |{y ∈ A : E[vy |s] = E[vx |s]}| denote the number of options in A

with the same posterior expected value as x , and define the random variable

C (x , s)≡







1/N (x , s) E[vx |s]≥ E[vy |s]∀ y ∈ A

0 otherwise

Choice probabilities are given by

ρ(x , A|C) = E[C (x , s)].

We assume the same tiebreaking rule in our extension to menu sequences wherein the
DM independently randomizes between the maximal options in each menu. In particular,
fix a choice problem ((A1, ...,An), C). For any option x ∈ Ai and signal realization s, let
N i(x , s)≡ |{y ∈ Ai : E[vy |s] = E[vx |s]}| denote the number of options in Ai with the same
posterior expected value as x , and define

C i(x , s)≡







1/N i(x , s) E[vx |s]≥ E[vy |s]∀ y ∈ Ai

0 otherwise
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Choice probabilities are given by

ρ((x1, ..., xn), (A1, ..., An)|C) = E

�

n
∏

i=1

C i(x i, s)

�

.

B.4 Identification in Multinomial Choice

Call ρ : X × A ×M → [0, 1] a multinomial choice rule if
∑

x∈Aρ(x , A|C) = 1 for all
(A, C) ∈A ×M . Our multinomial choice model is parameterized by the prior distribution
Q, the value function v : X → R, and the signal precisisons τ : D → R+, where we make
the additional assumption that τ(x , y) = 0 if v(x) = v(y). The following result states that
v is ordinally identified and τ is exactly identified.

Proposition 5. Suppose that a multinomial choice rule ρ is represented by (Q, v,τ) and
(Q′, v′,τ′). Then τ′ = τ and there exists φ : R→ R strictly increasing such that v′ = φ ◦ v.

This identification result relies only on binary choice data, from which the prior distribu-
tion Q cannot be identified. We conjecture that Q can be identified using choice data from
larger menus.

B.5 Preference Reversals in Intertemporal Valuations

Consider the intertemporal domain, where vx =
∑

t mx(t)δt for δ < 1, and where τx y has a
CPF-complexity representation τC PF

x y = H
�

PV (x)−PV (y)
dC PF (x ,y)

�

for which H(1) =∞; that is, the DM
perfectly learns the ranking between two payoff flows that have a dominance relationship.
We show how our how our model can rationalize documented preference reversals in the
intertemporal domain.

Example 4. (Preference reversals in intertemporal choice.) Consider the following delayed
payments

x : $3550 in 10 years

y : $1600 in 1.5 years

First consider a DM tasked with choosing directly between these two time-dated payments.
For any annual discount factor δ ≤ 0.91, the DM prefers the earlier payment y over x , and
so the model predicts that ρ(y, x)≥ 1/2 for δ in that range.
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Now consider a DM tasked with producing a valuation for each delayed payment in
terms of dollars today. Note that under τC PF

x y , the two payoff flows differ in their ease of
comparison to money today; following the same logic as in Example 2, our model predicts
that this results in distortions that cause x to be valued higher than y .
Formally, the DM faces a valuation task (υ, Z), where υ= (mυ, tυ) is a delayed payment

that pays out mυ > 0 at time tυ > 0, to be valued against a price list Z = {z1, ..., zn}, where
each zk = (mk, 0) is an immediate payment. Call Z adapted to a delayed payment υ if
mk−mk+1 is constant in k and m1 = mυ, mn = 0; we restrict attention to adapted price lists.
Let PV E(υ, Z) = 1/2[mR(υ,Z)−1+mR(υ,Z)] denote the distribution over the DM’s present value
equivalents obtained from assigning each switching point to a valuation at the midpoint of
the adjacent prices.
Figure 12 plots the average present equivalents E[PV E(υ, Z)] simulated from ourmodel

for delayed paymentsυwith the same present value as x and y for an annual discount factor
of δ = 0.91. The model predicts that the average valuations of x and y , which correspond to
the intersection of each curve with the vertical dashed lines in Figure 12, reveal an apparent
preference for the more heavily delayed payment x: we have E[C E(x , Z)] > E[C E(y, Z)],
despite the fact that ρ(y, x)≥ 1/2.

Figure 12: Simulated average present value equivalents E[PV E(υ, Z)] for delayed payments ν = (mυ, tυ)
with present value equal to that of x = (1600, 1.5) for δ = 0.91 as a function of tυ. In these simulations,
Z is adapted to υ, and we set |Z | = 15. τx y has a CPF-complexity representation parameterized by H(r) =
(Φ−1(G(r)))2, for G given by (1) with κ= 0,γ= 0.75. Priors are distributed Q ∼ U[0,1].
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B.6 Apparent Biases in Intertemporal Valuations

We work in the same setting as in Appendix B.5. Consider a standard paradigm used to
estimate the discount function: the DM values delayed payments υ = (m, tυ) terms of
money today. Figure 13 plots the normalized valuations E[PV E(ν, Z)]/m as a function of
the delay tυ, where υ is valued against a price list Z = (z1, ..., zn) of immediate payments
adapted to υ. As the figure shows, the DM’s valuations display apparent hyperbolicity: she
undervalues payments close to the present and overvalues payments with longer delays.

Figure 13: Simulated average present value equivalents E[PV E(υ, Z)] (in black) for delayed payments
ν = (m, tυ) as a function of tυ. Blue curves plot distortion-free present values given the true discount rate δ.
In these simulations, Z is adapted to υ, and we set |Z |= 15. τx y has a CPF-complexity representation param-
eterized by H(r) = (Φ−1(G(r)))2, for G given by (1) with κ= 0,γ= 0.75. Priors are distributed Q ∼ U[0,1].

Now consider an alternative paradigm that should reveal the same preferences as the
paradigm above in the absence of complexity-driven distortions. The DM asses the time
equivalents of an immediate payment: the delay t that makes the delayed payment (m, t)
indifferent to the immediate payment c = (mc, 0).
Formally, the DM values each delayed payment c = (mc, 0) against a time list Z =

(z1, ...zn), where each zk = (m, tk), for t1 < t2 < ..., tn. We restrict attention to time lists
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with t1 = 0. Let

T E(c, Z) =







1/2[tR(c,Z)−1 + tR(c,Z)] R(c, Z)< n+ 1

tn + 1/2(tn − tn−1) R(x , Z) = n+ 1

denote the distribution over the DM’s time equivalents obtained from assigning each switch-
ing point to a valuation at the midpoint of the adjacent delays.
Figure 14 plots the predicted relationship between the immediate payment amount

mc/m (y-axis) and the associated time equivalents E[T E(c, Z)] (x-axis). Here, the model
predicts an apparent reversal of hyperbolic discounting: the difficulty of comparing imme-
diate payments to the numeraire good causes time equivalents to compressed towards the
middle of the price list, generating overvaluation of payments close to the present and un-
dervaluation of payments with longer delays.

Figure 14: Relationship between simulated average time equivalents E[T E(c, Z)] (in black) for the immedi-
ate payment c = (mc , 0) and the normalized payment amount mc/m. Blue curves plot distortion-free time
equivalents given the true discount rate δ. In these simulations, Z = (z1, ..., zn), where where zk = (m, tk), for
(t1, ..., tn) = (0, 2,4, 8,12, 18,24, 36,48, 64,84,108, 136,168, 200) months. τx y has a CPF-complexity rep-
resentation parameterized by H(r) = (Φ−1(G(r)))2, for G given by (1) with κ = 0,γ = 0.75. Priors are
distributed Q ∼ U[0, 1].
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C Appendix: Proofs

C.1 Characterization Results

Begin with some basic definitions and observations. Let X be a space of options, and let
D = {(x , y) ∈ X × X : x ̸= y}. Say ρ : D → [0, 1] is a binary choice rule on X if ρ(x , y) =
1−ρ(y, x).
Call a (complete) binary relation ⪰ on X the stochastic order induced by a binary choice

rule ρ if for all x ̸= y , x ⪰ y if ρ(x , y) ≥ 1/2, and for all x ∈ X , x ⪰ x . Say that
a binary choice rule ρ satisfies moderate transitivity if for ρ(x , y),ρ(y, z) ≥ 1/2, then
ρ(x , z) > min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(x , y) = ρ(y, z). Say that a binary choice
rule ρ satisfies weak transitivity if for ρ(x , y),ρ(y, z) ≥ 1/2, ρ(x , y) ≥ 1/2. Consider a
partial order ≥X on X . Say that a binary choice rule ρ satisfies monotonicity with respect to
≥X if x ′ ≥X x implies ρ(x ′, y) ≥ ρ(x , y), where the inequality is strict whenever x ̸≥X x ′,
x ̸≥X y and y ̸≥X x . Say that ρ satisfies dominance with respect ≥X if whenever x ≥X y ,
we have ρ(x , y)≥ ρ(w, z) for all w, z ∈ X , where the inequality is strict if w ̸≥X z.

Lemma 1. If ρ defined on X satisfies moderate transitivity and dominance with respect to a
partial order ≥X , then it satisfies monotonicity with respect to ≥X .

Proof. Take any options x , y , and suppose x ′ ≥X x . If x ≥X x ′, then x ′ = x since ≥X is
a partial order and is therefore antisymmetric, and we are done. Now consider the case
where x ̸≥X x ′. Note that if x ≥X y , since ≥X is transitive we also have x ′ ≥X y , and so
Dominance implies that ρ(x ′, y)≥ ρ(x , y) and we are done.
Now consider the case where x ̸≥X y . Let ⪰ denote the stochastic order induced by

ρ; since ρ satisfies MST, ⪰ is complete and transitive. By dominance, we have ρ(x ′, x) >
ρ(x , x ′) =⇒ ρ(x ′, x)> 1/2 and so x ′ ≻ x . There are three cases to consider:

Case 1: x ′ ⪰ x ⪰ y . Bymoderate transitivity,ρ(x ′, y)>min{ρ(x ′, x),ρ(x , y)} orρ(x ′, y) =
ρ(x ′, x) = ρ(x , y). But since ρ(x ′, x) > ρ(x , y) by dominance, it must be the case that
ρ(x ′, y)> ρ(x , y).

Case 2: x ′ ⪰ y ⪰ x . By definition of ⪰, ρ(x ′, y) ≥ 1/2 ≥ ρ(x , y). Also, since x ′ ≻ x ,
we must have one of x ′ ≻ y or y ≻ x , and so by definition of ⪰ we must have one of
ρ(x ′, y)> 1/2 or 1/2> ρ(x , y), which implies ρ(x ′, y)> ρ(x , y).

Case 3: y ⪰ x ′ ⪰ x . Toward a contradiction, suppose that ρ(y, x ′)> ρ(y, x). By moderate
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transitivity, we have ρ(y, x) > min{ρ(y, x ′),ρ(x ′, x)} which implies ρ(y, x) > ρ(x ′, x),
which contradicts dominance and so ρ(y, x ′)≤ ρ(y, x) =⇒ ρ(x ′, y)≥ ρ(x , y).

All that remains is to show that ρ(x ′, y) > ρ(x , y) when x ̸≥X y and y ̸≥X x . We
have already shown that the inequality is strict in Cases 1 and 2; all that remains is to
show that the inequality is strict in Case 3. Suppose y ⪰ x ′ ⪰ x . Toward a contradiction,
suppose that ρ(y, x ′)≥ ρ(y, x). Moderate transitivity then implies that either (i) ρ(y, x)>
min{ρ(y, x ′),ρ(x ′, x)} or (ii) ρ(y, x) = ρ(y, x ′) = ρ(x ′, x). As we saw above, it cannot be
the case that (i) holds. If (ii) holds, then dominance implies that y ≥ x , a contradiction.

For the following result, we consider the case where X is a convex set. Say ρ is linear if
ρ(x , y) = ρ(λx+(1−λ)z,λy+(1−λ)z) for all x , y, z ∈ X , λ ∈ (0, 1). Say ρ is superadditive
if for any x , y, x ′, y ′ with ρ(x , y),ρ(x ′, y ′) ≥ 1/2, for any λ ∈ [0, 1] we have ρ(λx + (1−
λ)x ′,λy + (1−λ)y ′)≥min{ρ(x , y),ρ(x ′, y ′)}.

Lemma 2. Let X be a vector space. If ρ defined on X satisfies moderate transitivity and lin-
earity, then ρ is superadditive.

Proof. Since X is a vector space and so contains additive inverses, linearity impliesρ(x , y) =
ρ(C x , C y) and ρ(x , y) = ρ(x − z, y − z) for any for any C > 0, x , y, z ∈ X . Now consider
x , y, x ′, y ′ with ρ(x , y),ρ(x ′, y ′)≥ 1/2, and λ ∈ [0, 1]. The above implies that

ρ(λ(x − y), 0) = ρ(x , y)≥ 1/2

ρ(0,−(1−λ)(x ′ − y ′)) = ρ(x ′, y ′)≥ 1/2

ρ(λx + (1−λ)x ′,λy + (1−λ)y ′) = ρ(λ(x − y),−(1−λ)(x ′ − y ′))

This, in conjunction with moderate transitivity, implies that

ρ(λx + (1−λ)x ′,λy + (1−λ)y ′) = ρ(λ(x − y),−(1−λ)(x ′ − y ′))

≥min{ρ(λ(x − y), 0),ρ(0,−(1−λ)(x ′ − y ′))}

=min{ρ(x , y),ρ(x ′, y ′)}

Proof of Theorem 1.

Necessity of the axioms is immediate from the definition. We now show sufficiency.
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Assume that M1–M5 holds. Let ⪰ denote the stochastic order on Rn induced by ρ. By
weak transitivity, ⪰ is transitive. Since ρ satisfies Continuity and Linearity, ⪰ satisfies ax-
ioms D1–D3 of Theorem 9.1 of Gilboa (2009). Invoking an intermediate step in the proof
of this theorem, we conclude that there exists weights β ∈ Rn such that U(x) =

∑

k βk xk

represents ⪰. Since all attributes are non-null, we have that βk ̸= 0 for all k. For the remain-
der of the proof, we henceforth identify each option x with its weighted attribute values, so
that U(x) =

∑

k xk. Since ρ satisfies Dominance and MST, Lemma 1 implies that ρ satisfies
monotonicity with respect to the component-wise dominance relation on Rn.
For z ∈ Rn, Let d+(z) =

∑

k:zk≥0 zk and d−(x) =
∑

k:zk<0 |zk| denote the summed advan-
tages and disadvantages in the comparison between z and 0. Say that z has no dominance
relationship if d+(z), d−(z)> 0.

Claim 1. For any z ∈ Rn satisfying
∑

k zk ≥ 0, ρ(z, 0) = ρ(d+(z)e1 − d−(z)e2, 0).

Proof. For i, j ∈ {1, ..., n}, i ̸= j, define z i j ∈ Rn satisfying

z i j
k =















d+(z) k = i

−d−(z) k = j

0 otherwise

Note that because we have normalized utility weights 1, for all i ̸= j, l ̸= m, we have
U(z i j) = d+(z) − d−(z) = U(z lm), and so z i j ∼ z lm. We will first show that ρ(z i j, 0) =
ρ(z lm, 0) for all i ̸= j, l ̸= m. It is sufficient to show that for all i, j ρ(z i j, 0) = ρ(z12, 0).
There are two cases to consider:

Case 1: j > i. Since z1 j ∼ z i j, and since z1 j
i = 0, z1 j

k = z i j
k for all k ̸= i, 1, Simplification

implies that ρ(z1 j, 0)≥ ρ(z i j, 0). Also, since z i j
1 = 0, and z i j

k = z1 j
k for all k ̸= 1, i, Simplifica-

tion implies ρ(z1 j, 0)≤ ρ(z i j, 0), and so ρ(z1 j, 0) = ρ(z i j, 0). A analogous argument yields
ρ(z12, 0) = ρ(z1 j, 0), and so ρ(z i j, 0) = ρ(z12, 0).

Case 2: j < i. By analogous arguments as above, we have ρ(z i j, 0) = ρ(zn j, 0), ρ(zn j, 0) =
ρ(zn2, 0) and ρ(zn2, 0) = ρ(z12, 0), and so ρ(z i j, 0) = ρ(z12, 0) as desired.

Let K+ = {i ∈ {1,2, ..., n} : zi ≥ 0} and K− = {i ∈ {1, 2, ..., n} : zi < 0}. Defining
λi =

zi
∑

k∈K+ zk
for i ∈ K+, and γ j =

z j
∑

k∈K− zk
for j ∈ K−, note that z =

∑

i∈K+
∑

j∈K− λiγ jz
i j, and

so z can be expressed as a mixture of z i j ’s. Since ρ satisfies superadditivity by Lemma 2, by
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inductive application of superadditivity, we have ρ(z, 0) ≥ ρ(z i j, 0) for all i ̸= j, which in
turn implies ρ(z, 0)≥ ρ(z12, 0).
Note that by repeated application of Simplification, we have ρ(z, 0)≤ ρ(z i j, 0), for some

i where zi ≥ 0, and some j where z j ≤ 0. Since ρ(z i j, 0) = ρ(z12, 0), we have ρ(z, 0) ≤
ρ(z12, 0), and so ρ(z, 0) = ρ(z12, 0) as desired.

Claim 2. For z with
∑

k zk ≥ 0, ρ(z, 0) = G̃
�

d+(z)−d−(z)
d+(z)+d−(z)

�

for some strictly increasing, contin-
uous G̃ : [0, 1]→ R.

Proof. Fix any z with
∑

k zk ≥ 0, and consider the case where z has no dominance relation-
ship, that is d+(z)> 0, d−(z)> 0. By Claim 1, we haveρ(z, 0) = ρ(d+(z)e1−d−e2, 0). Define
F : [1,∞)→ [1/2, 1) by F(t) = ρ(te1−e2, 0); by monotonicity, of ρ, F is strictly increasing.
By Linearity, we have ρ(d+(z)e1− d−e2, 0) = ρ((d+(z)/d−(z))e1− e2, 0) = F(d+(z)/d−(z)).

Let ϕ(z) = z−1
z+1 ; and define G̃ : [0,1)→ R where G̃(z) = F(ϕ−1(z)); since ϕ and F are

strictly increasing, G̃ is strictly increasing. By construction, we have F(z) = G̃
�

z−1
z+1

�

, and
so ρ(z, 0) = ρ(d+(z)e1 − d−e2, 0) = G̃

�

d+(z)−d−(z)
d+(z)+d−(z)

�

. Since ρ is continuous, G̃ is continuous
on its domain [0,1), and in particular is uniformly continuous since it is increasing and
bounded. Take the continuous extension of G̃ to [0, 1].
Now consider the case where z has a dominance relationship; that is d+(z)> 0, d−(z) =

0. By Dominance, ρ(z, 0) = ρ(d+(z)e1 − d−e2, 0) takes on some constant value q such that
q > ρ(z′, 0) for all z′ without a dominance relationship, which implies that q > G̃(t) for all
t ∈ [0,1). Since ρ is continuous, it must be the case that q = G̃(1).

Now, let G : [−1, 1]→ R be the symmetric extension of G̃ satisfying

G(z) =







G̃(z) z ≥ 0

1− G̃(−z) z < 0

Claim 3. For any z, ρ(z, 0) = G
�

d+(z)−d−(z)
d+(z)+d−(z)

�

.

Proof. Claim 1 implies that ρ(z, 0) = G
�

d+(z)−d−(z)
d+(z)+d−(z)

�

whenever
∑

k zk ≥ 0. Now consider the
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case where
∑

k zk < 0. Note that

ρ(z, 0) = 1−ρ(−z, 0)

= 1− G̃
�

d−(z)− d+(z)
d+(z) + d−(z)

�

= G
�

d+(z)− d−(z)
d+(z) + d−(z)

�

as desired, where the first equality uses symmetry and Linearity of ρ and the second equal-
ity uses Claim 2.

Take any x , y , and let z = x − y . Due to linearity, we have

ρ(x , y) = ρ(z, 0)

= G
�

d+(z)− d−(z)
d+(z) + d−(z)

�

= G

�
∑

k zk
∑

k |zk|

�

= G
�

U(x)− U(y)
dL1(x , y)

�

as desired.

Finally, to show uniqueness, suppose (G,β) and (G′,β ′) both represent ρ. Define the
stochastic preference relation ⪰ as before. Since G and G′ are both strictly increasing and
symmetric around 0, U(x) =

∑

k βk xk and U ′(x) =
∑

k β
′
k xk both represent ⪰, and so there

exists C > 0 such that β ′k = Cβk. This in turn implies that for all z ∈ Rn, we have

G

�
∑

k βkzk
∑

k |βkzk|

�

= G′
�
∑

k β
′
kzk

∑

k |β
′
kzk|

�

= G′
�
∑

k βkzk
∑

k |βkzk|

�

Let z = α/β1e1+γ/β2e2. Note that for any r ∈ [−1,1], there exists α,γ such that
∑

k βkzk
∑

k |βkzk|
=

α−γ
|α+γ| = r, and so G′(r) = G(r) for all r ∈ [−1, 1].

□
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Proof of Theorem 2.

The proof of necessity is routine. Theorem 1 covers sufficiency for the n ≥ 3 case. We now
show sufficiency in the case where n = 2; assume that M1–M6 hold. Note that Claim 1 in
the proof of Theorem 1 continues to hold in this case; that is, that for any z ∈ Rn satisfying
∑

k zk ≥ 0, ρ(z, 0) = ρ(d+(z)e1 − d−(z)e2, 0). To see this, note that if z1 ≥ 0, z2 ≥ 0, the
desired equality follows from Dominance; if not then either i) z1 > 0, z2 < 0 or ii) z1 < 0

and z2 > 0. In case i), the equality is immediate since z = d+e1+d−e2, which in conjunction
with Exchangeability, implies the desired equality for case ii). Following the steps in Claims
2 and 3 in the proof of Theorem 1 completes the proof of sufficiency. Note that the argument
for uniqueness in Theorem 1 holds for n= 2, and so uniqueness holds as well.

□

Proof of Theorem 3.

The proof of necessity of M1, M4–M5, andM7 are routine. To see that M3 (Moderate Transi-
tivity) is necessary, consider x , y, z withρ(x , y)≥ 1/2 andρ(y, z)≥ 1/2. If dL1(x , y), dL1(y, z),
dL1(x , z) > 0, then the restriction of ρ to {x , y, z} belongs to the moderate utility class
studied in He and Natenzon (2023) and so by Theorem 1 of this paper we can conclude
that this restriction satisfies Moderate Transitivity. There are four additional cases to con-
sider. Case 1: suppose dL1(x , y) = 0. We then have ρ(x , z) = ρ(y, z) and ρ(x , y) =
1/2, so either ρ(x , z) > min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(y, z) = ρ(x , z). Case 2:
dL1(y, z) = 0. We then have ρ(x , z) = ρ(x , y) and ρ(y, z) = 1/2, and so again either
ρ(x , z) > min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(y, z) = ρ(x , z). Case 3: dL1(x , z) = 0. Here
we have ρ(x , z) = 1/2, and ρ(x , y) = ρ(z, y) ≥ 1/2 and ρ(y, z) ≥ 1/2, which implies
ρ(y, z) = ρ(x , y) = 1/2; we therefore have ρ(x , y) = ρ(y, z) = ρ(x , z). Finally, consider
dL1(x , y) = dL1(x , z) = dL1(y, z) = 0; here we have ρ(x , y) = ρ(y, z) = ρ(x , z), and so
Moderate Transitivity holds in all cases.
To see that M8 (Tradeoff Congruence) is necessary, take (x , y), (y, z) ∈ D congruent

such that ρ(x , y),ρ(y, z) ≥ 1/2. Note that if dL1(x , z) = 0, then ρ(x , y) = 1/2 and since
ρ satisfies Moderate Transitivity we have ρ(x , y) = ρ(y, z) = 1/2 and we are done. Now
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consider the case where ρ(x , z) ̸= 0. Note that

ρ(x , z) = G

�
∑

k(uk(xk)− uk(zk))
∑

k |uk(xk)− uk(zk)|

�

= G

�
∑

k(uk(xk)− uk(yk) + uk(yk)− uk(zk))
∑

k |uk(xk)− uk(yk) + uk(yk)− uk(zk)|

�

= G
�

U(x)− U(y) + U(y)− U(z)
dL1(x , y) + dL1(y, z)

�

Where the final equality holds because congruence implies that uk(xk)−uk(yk) and uk(yk)−
uk(zk) must either be both positive or negative. This implies that if either dL1(x , y) = 0 or
dL1(y, z) = 0, we are done. Now consider the case where dL1(x , y), dL1(y, z) > 0, and
suppose ρ(y, z)≤ ρ(x , y); this implies U(y)−U(z)

dL1(y,z) ≤
U(x)−U(y)

dL1(x ,y) . The above implies

ρ(x , z) = G

 U(x)−U(y)
dL1(y,z) +

U(y)−U(z)
dL1(y,z)

dL1(x ,y)
dL1(y,z) + 1

!

≤ G

 U(x)−U(y)
dL1(y,z) +

U(x)−U(y)
dL1(x ,y)

dL1(x ,y)
dL1(y,z) + 1

!

= ρ(x , y)

and so ρ(x , z)≤max{ρ(x , y),ρ(y, z)} when ρ(y, z)≤ ρ(x , y). The argument for the case
where ρ(y, z)≥ ρ(x , y) is analogous.

Now we show sufficency. Let ⪰ be the stochastic preference relation induced by ρ. ⪰
satisfies coordinate independence and inherits continuity from ρ, and since we have at
least 3 non-null attributes, we invoke Debreu (1983) to conclude that ⪰ has an additively
separable representation: there exists ui : X i → R, continuous, such that

x ⪰ y ⇐⇒
∑

k

uk(xk)≥
∑

k

uk(yk)

Since all attributes are non-null and the Xk are connected, each uk(Xk) is a non-trivial
interval of R. Since the representation is unique up to cardinal transformations, we can
without loss assume that for each k ∈ I , uk(Xk) contains 0, and furthermore, since uk(Xk)
is a non-trivial interval, that uk(Xk) contains a non-trivial open interval around 0. For all
k ∈ I , let uk = sup uk(Xk) and uk = inf uk(Xk), taken with respect to the extended real line,
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and let ∆k = uk − uk. For all x ∈ X , define x̃ = (u1(x1), ...,uk(xk)) ∈ Rn. Begin by noting
the following result.

Lemma 3. For x , y ∈ X with x̃ = ỹ: ρ(x , z) = ρ(y, z) for all z ∈ X .

Proof. Fix such an x , y , and take any z ∈ X . Note that x ∼ y by hypothesis. First consider
the case where x ∼ y ⪰ z. Since (x , y) and (y, z) are congruent, and likewise (y, x) and
(x , z) are congruent, Tradeoff Congruence implies

ρ(x , z)≤max{ρ(y, z),ρ(x , y)}= ρ(y, z)

ρ(y, z)≤max{ρ(x , z),ρ(y, x)}= ρ(x , z)

and so ρ(y, z) = ρ(x , z). Analogously, consider the case where z ⪰ x ∼ y . Since (z, x) and
(x , y) are congruent and likewise (z, y) and (y, x) are congruent, we have

ρ(z, x)≤max{ρ(z, y),ρ(y, x)}= ρ(z, y)

ρ(z, y)≤max{ρ(z, x),ρ(x , y)}= ρ(z, x)

and so ρ(z, x) = ρ(z, y) =⇒ ρ(x , z) = ρ(y, z).

Let X̃ = { x̃ ∈ Rn : x ∈ X }. Let D̃ = {(a, b) ∈ X̃ : a ̸= b} and define φ : D̃ → D satisfying
φ(a, b) ∈ {(x , y) ∈ D : x̃ = a, ỹ = b}, and define ρ̃ : D̃ → [0, 1] by ρ̃(a, b) = ρ(φ(a, b)).
Lemma 3 implies that ρ̃ is a binary choice rule on D̃ and does not depend on the selection
made by φ: in particular, we have ρ̃( x̃ , ỹ) = ρ(x , y) for all (x , y) ∈ D. This in turn implies
that ρ̃ inherits our axiomsM1,M3–M5, M7–M8. Note that if there exists a strictly increasing,
continuous function G such that

˜ρ(a, b) = G

�
∑

k(ak − bk)
∑

k |ak − bk|

�

for all (a, b) ∈ D, we are done, as this implies that for any (x , y) ∈ D such that x̃ ̸= ỹ ⇐⇒
∑

k |uk(xk)− uk(yk)|> 0,

ρ(x , y) = ρ̃( x̃ , ỹ) = G

�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�

and furthermore for (x , y) ∈ D such that x̃ = ỹ , we have x ∼ y =⇒ ρ(x , y) = 1/2, and
so ρ has an additively separable L1-complexity representation.
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In what follows, we will work with ρ̃ defined on X̃ and suppress the ∼ in our notation.
Say that ρ defined on this domain is

• Translation invariant if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ = y + z,
ρ(x ′, y ′) = ρ(x , y).

• Scale invariant if for all x , x ′, y, y ′ ∈ X such that x ′ = cx , y ′ = c y for c > 0,ρ(x ′, y ′) =
ρ(x , y).

• Translation invariant* if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ = y + z,
and additionally xk = yk for some k ∈ I , ρ(x ′, y ′) = ρ(x , y).

• Scale invariant* if for all x , x ′, y, y ′ ∈ X such that x ′ = cx , y ′ = c y for c > 0, and
additionally xk = yk for some k ∈ I , ρ(x ′, y ′) = ρ(x , y).

• Translation invariant† if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ =
y + z, and additionally xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I ,
ρ(x ′, y ′) = ρ(x , y).

• Scale invariant† if for all x , x ′, y, y ′ ∈ X such that x ′ = λx , y ′ = λy for λ ∈ (0,1), and
additionally xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I , ρ(x ′, y ′) =
ρ(x , y).

First, note that Separability and Simplification imply translation invariance†.

Lemma 4. Suppose ρ satisfies Separability and Simplification. Then ρ satisfies translation
invariance†.

Proof. Begin by noting that for x ′, y ′, x , y ∈ X , z ∈ Rn with x ′ = x + z, y ′ = y + z, and
xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I : for any E ⊆ I , x +

∑

j∈E z{ j}
and y +

∑

j∈E z{ j} will be in our domain, with
�

x +
∑

j∈E z{ j}
�

k
=
�

y +
∑

j∈E z{ j}
�

k
and with

�

�

�

�

x +
∑

j∈E z{ j}
�

i
−
�

y +
∑

j∈E z{ j}
�

i

�

�

� <∆k for all i. Since we can translate x and y by each
component z{ j} attribute-by-attribute, it suffices to show that for any x , y ∈ X with xk = yk

where |x i − yi| <∆k for all i ∈ I , z ∈ Rn, j ∈ I such that x + z{ j} and y + z{ j} belong to our
domain, ρ(x + z{ j}, y + z{ j}) = ρ(x , y). Fix such an x , y ∈ X , z ∈ Rn, k, j ∈ I .
Note that if j = k, Separability gives us the desired result. Now suppose j ̸= k. Suppose

that x j ≥ y j (the argument for x j < y j is analogous). For any i ∈ I , a ∈ (ui, ui), w ∈ X ,
let a{i}w ∈ X denote the option equal to a for attribute k = i and equal to wk for all other
attributes. Since by hypothesis |x i − yi| < ∆k for all i, there exists some b ∈ (uk, uk) such
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that |x i − yi| < uk − b for all i. By Separability, we have ρ(b{k}x , b{k} y) = ρ(x , y). Now
consider x ′ ∈ Rn satisfying

x ′i =















y j i = j

b+ (x j − y j) i = k

x i otherwise

By construction, b + (x j − y j) < uk, and so x ′ ∈ X . Applying simplification twice, we have
ρ(x ′, b{k} y) = ρ(b{k}x , b{k} y). Since x ′j = (b{k} y) j by construction, Separability in turn
implies that ρ(x ′+z{ j}, b{k} y+z{ j}) = ρ(x ′, b{k} y). Again applying Simplification twice, we
have ρ(b{k}x+z{ j}, b{k} y+z{ j}) = ρ(x ′+z{ j}, b{k} y+z{ j}). A final application of Separability
yields ρ(x + z{ j}, y + z{ j}) = ρ(b{k}x + z{ j}, b{k} y + z{ j}), and the chain of equalities yields
the ρ(x + z{ j}, y + z{ j}) = ρ(x , y) as desired.

The next result says that scale invariance* is implied by translation invariance† and our
other axioms.

Lemma 5. Suppose ρ satisfies translation invariance†, Continuity, Moderate Transitivity, and
Tradeoff Congruence. Then ρ satisfies scale invariance*.

Proof. First, show that invariance† holds for half-mixtures and then extend the result to
arbitrary mixtures using continuity. In particular, we want to show that for x , y ∈ X with
xk = yk for some k such that |x i − yi| < ∆k for all i, ρ(x , y) = ρ(1

2 x , 1
2 y). Without loss,

suppose that x ⪰ y . By translation invariance†, we have ρ(x , 1
2 x + 1

2 y) = ρ(1
2 x + 1

2 y, y) =
ρ(1

2 x , 1
2 y). Since (x , 1

2 x + 1
2 y) and (1

2 x + 1
2 y, y) are congruent and x ⪰ 1

2 x + 1
2 y ⪰ y ,

by Tradeoff Congruence and Moderate Transitivity, we have ρ(x , y) = ρ(x , 1
2 x + 1

2 y) =
ρ(1

2 x , 1
2 y) as desired.

We now show that for any x , y ∈ X with xk = yk and |x i − yi|<∆k for all i ∈ I , for any
n ∈ N, ρ(x , y) = ρ(αx ,αy) for all α ∈ { 1

2n , 2
2n , ..., 2n

2n }. Note that if x ∼ y , then the result
holds by definition of ⪰ and we are done. Now suppose that x ̸∼ y , and assume without
loss that x ≻ y . Proceed inductively; given what we have shown above, the statement
is true for n = 1. Now suppose the statement is true for some n; we wish to show that
for any m ∈ {1, ..., 2n+1}, ρ( m

2n+1 x , m
2n+1 y) = ρ(x , y). Note that for any m ≤ 2n we have

ρ( m
2n+1 x , m

2n+1 y) = ρ( m
2n x , m

2n y) = ρ(x , y) using our result on half-mixtures and by inductive
hypothesis.
Now consider m ∈ {2n + 1, ..., 2n+1}. Note that by translation invariance† and by induc-

tive hypothesis, we have ρ( m
2n+1 x , 1

2 y + m−2n

2n+1 x) = ρ(1
2 x , 1

2 y) = ρ(x , y). Also, by translation
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invariance† and inductive hypothesis, we have ρ(1
2 y + m−2n

2n+1 x , m
2n+1 y) = ρ(m−2n

2n+1 x , m−2n

2n+1 y) =
ρ(x , y). These two equalities andModerate Transitivity imply thatρ( m

2n+1 x , m
2n+1 y)≥ ρ(x , y).

Toward a contradiction, suppose ρ( m
2n+1 x , m

2n+1 y)> ρ(x , y). translation invariance† then
implies ρ(x , 2n+1−m

2n+1 x + m
2n+1 y) > ρ(x , y). By translation invariance† and the result shown

above, we also have ρ(2n+1−m
2n+1 x + m

2n+1 y, y) = ρ(2n+1−m
2n+1 x , 2n+1−m

2n+1 y) = ρ(x , y). But since Mod-
erate Transitivity implies that ρ(x , y)> ρ(2n+1−m

2n+1 x+ m
2n+1 y, y), we have a contradiction. This

proves the statement for n+1, and so by induction the statement holds for any n. By taking
limits and by Continuity of ρ, we can then conclude that scale invariance† holds.
Now we show that scale invariance* holds. Fix any x , y ∈ X where xk = yk for some

k. Without loss, assume x ⪰ y . First, show that ρ(x , y) = ρ(λx ,λy) for any λ ∈ (0, 1).
Note that there exists some N ∈ N such that 1

N |x i − yi| < ∆k for all i. For n ∈ {0, 1, ..., N},
define wn ∈ X by wn = n

N x + N−n
N y . Now consider the sequence of comparisons (wN , wN−1),

(wN−1, wN−2), ..., (w1, w0). Since wn−wn−1 = 1
N (x − y) for all n, we have wn ⪰ wn−1 for all n,

and additionally |wn
i − wn−1

i | < ∆k for all i, and so translation invariance† implies that for
all n, ρ(wn, wn−1) = ρ(wn−(N−n

N y+ n−1
N x), wn−1−(N−n

N y+ n−1
N x)) = ρ( 1

N x , 1
N y). Sequential

applications of Moderate Transitivity and Tradeoff Congruence yield, respectively

ρ(x , y)≥min{ρ(wN , wN−1),ρ(wN−1, wN−2), ...,ρ(w1, w0)}

ρ(x , y)≤max{ρ(wN , wN−1),ρ(wN−1, wN−2), ...,ρ(w1, w0)}

and so we have ρ(x , y) = ρ( 1
N x , 1

N y). An analogous argument, taking the sequence of com-
parisons (λwN ,λwN−1), (λwN−1,λwN−2), ..., (λw1,λw0), yields ρ(λx ,λy) = ρ(λ 1

N x ,λ 1
N y).

By scale invariance†, noting again that 1
N |x i − yi| < ∆k for all i, we have ρ(λ 1

N x ,λ 1
N y) =

ρ( 1
N x , 1

N y) and so ρ(x , y) = ρ(λx ,λy) as desired.
We have therefore shown that for any x , y ∈ X with xk = yk for some k, λ ∈ (0,1),

ρ(x , y) = ρ(λx ,λy). Finally, fix some c > 0 and x , y ∈ X with xk = yk for some k and
cx , c y ∈ X ; we wish to show that ρ(x , y) = ρ(cx , c y). If c ≤ 1, we are done by the result
established above. If instead c > 1, the above result implies that ρ(cx , c y) = ρ(1

c cx , 1
c c y) =

ρ(x , y).

Scale invariance* allows us to strengthen translation invariance† to translation invari-
ance*.

Lemma 6. Suppose ρ satisfies translation invariance† and scale invariance*. Then ρ satisfies
translation invariance*.

Proof. Take x , y ∈ X with xk = yk for some k, and z ∈ Rn such that x + z, y + z ∈ X . There
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exists some λ ∈ (0,1) such that λ|x i − yi|<∆k for all i; fix such a λ. We then have

ρ(x , y) = ρ(λx ,λy)

= ρ(λ(x + z),λ(y + z))

= ρ(x + z, y + z)

where the first and third equalities use scale invariance* and the second equality uses trans-
lation invariance†.

We now show that scale invariance*, translation invariance*, and Tradeoff Congruence
imply translation invariance.

Lemma 7. Supposeρ satisfies translation invariance*, scale invariance*, Simplification, Trade-
off Congruence, and Moderate Transitivity. Then ρ satisfies translation invariance.

Proof. Take any x , y ∈ X , w ∈ Rn such that x + w, y + w ∈ X . We want to show that
ρ(x + w, y + w) = ρ(x , y). Without loss, assume that x ⪰ y . Note that if x ≥ y , we are
done by Dominance, so consider the case where x ̸≥ y . Let z = x− y ∈ Rn. If zk = 0 for some
k, then by translation invariance* we are done, so consider the case where zk ̸= 0 for all k. It
must then be the case that there exist distinct indices i, j ∈ I such that sgn(zi) = sgn(z j) ̸= 0.
Define z i, z j ∈ Rn such that

z i
k =















zi + z j k = i

0 k = j

zk otherwise

z j
k =















0 k = i

zi + z j k = j

zk otherwise

Letting λ = z i

z i+z j
∈ (0,1), note that by construction z = λz i + (1−λ)z j. Now fix any v ∈ X

such that z+ v, v ∈ X ; note that z+ v ∈ X =⇒ (1−λ)z j+ v ∈ X . Since each uk(Xk) contains
a non-trivial open interval around 0, there exists γ ∈ (0,1) such that γz i,γz j ∈ X . We then
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have

ρ(z + v, (1−λ)z j + v) = ρ(γ(z + v),γ((1−λ)z j + v))

= ρ(γλz i, 0)

= ρ(γz i, 0)

= ρ(γz j, 0)

= ρ(γ(1−λ)z j, 0)

= ρ(γ((1−λ)z j + v),γv)

= ρ((1−λ)z j + v, v)

Where the first three equalities follow from scale invariance* and translation invariance*,
noting that by construction, (1−λ)z j

j = z j, the fourth equality follows from two applications
of Simplification, and the final three equalities follow from translation invariance* and scale
invariance*, noting that z j

i = 0.
By construction, (z+ v, (1−λ)z j+ v) and ((1−λ)z j+ v, v) are congruent, since [z+ v]−

[(1−λ)z j+ v] = λz i and [(1−λ)z j+ v]− v = (1−λ)z j, and since for all k, either z j
k, z i

k ≥ 0

or z j
k, z i

k ≤ 0. Furthermore, since
∑

k z i
k =

∑

k z j
k =

∑

k zk ≥ 0, we have z + v ⪰ (1−λ)z j + v

and (1−λ)z j + v ⪰ v. We then have

ρ(z + v, v) = ρ(z + v, (1−λ)z j + v)

= ρ(γz i, 0)

Where the first equality follows from Tradeoff Congruence and Moderate Transitivity, and
the second equality follows from the chain of equalities above. Since this equality holds for
all v such that z+v, v ∈ X , substituting v = y and v = y+w yields ρ(x , y) = ρ(x+w, y+w)
as desired.

Lemma 8. Suppose ρ satisfies translation invariance, Continuity, Moderate Transitivity, and
Tradeoff Congruence. Then ρ satisfies scale invariance.

Proof. Fix any x , y ∈ X , andwithout loss suppose x ⪰ y . Note that by translation invariance,
we have ρ(x , 1

2 x + 1
2 y) = ρ(1

2 x + 1
2 y, y) = ρ(1

2 x , 1
2 y). Since (x , 1

2 x + 1
2 y) and (1

2 x + 1
2 y, y)

are congruent and x ⪰ 1
2 x + 1

2 y ⪰ y , by Tradeoff Congruence and Moderate Transitivity,
we have ρ(x , y) = ρ(x , 1

2 x + 1
2 y) = ρ(1

2 x , 1
2 y).

The proof for extending the result on half-mixtures to arbitrary mixtures and then to
arbitrary rescaling follows an analogous argument as in the proof for Lemma 5, invoking
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translation invariance whenever translation invariance† is invoked in that proof.

Using Lemmas 4–8, we conclude that ρ satisfies scale and translation invariance. Lin-
early extend ρ to Rn as follows. Define D = {(x , y) ∈ Rn × Rn : x ̸= y}, and define
ρ : D → [0,1] such that for any (x , y) ∈ D, ρ(x , y) = ρ(x , y), and for any (x , y) ∈ D \D,
ρ(x , y) = ρ(λx ,λy) for some λ ∈ (0, 1) such that λx ,λy ∈ X . Since X contains an open
a ball around the origin, this extension is well-defined. Furthermore, since ρ satisfies scale
and translation invariance, so does ρ, and so ρ satisfies M2 (Linearity). Noting that for any
finite collection of options A⊆ Rn, there exists λ ∈ (0, 1) such that λx ∈ X for all x ∈ A, by
scale invariance of ρ it is straightforward to show that ρ is a binary choice rule and satis-
fies M1, M3–M5. Theorem 1 then implies that there exists G continuous, strictly increasing,
such that for all (x , y) ∈ D,

ρ(x , y) = G

�
∑

k(xk − yk)
∑

k |xk − yk|

�

which in turn implies that for all (x , y) ∈ D,

ρ(x , y) = ρ(x , y) = G

�
∑

k(xk − yk)
∑

k |xk − yk|

�

which yields the desired representation.

Finally, we show uniqueness. Suppose that ρ has additively separable L1 complexity
representations ((ui)ni=1, G) and ((u′i)

n
i=1, G′). Let⪰ denote the stochastic order on X induced

byρ. Since G and G′ are strictly increasing and symmetric around 0, we have for all x , y ∈ X

x ⪰ y ⇐⇒
∑

k

uk(xk)≥
∑

k

uk(yk) ⇐⇒
∑

k

u′k(xk)≥
∑

k

u′k(yk)

and U , U ′ both represent ⪰, where U(x) =
∑

k uk(xk) and U ′(x) =
∑

k u′k(xk). Debreu
(1983) then implies that there exists C > 0, bk ∈ R such that u′k = Cuk + bk for all k. This
implies that for all x , y ∈ X ,

G

�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�

= G′
�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�

By assumption, there exist two non-null indices; without loss, we assume indices 1 and
2 are non-null. Since u1, u2 are continuous and X1 and X2 are connected, u1(X1) and u2(X2)
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are intervals in Rn. Since we have shown that the uk are unique up to affine transformations,
we can without loss assume that for all µ ∈ [0, 1], there exist xµ1 ∈ X1 and yµ1 ∈ X2 such
that u1(x

µ
1 ) = u2(x

µ
2 ) = µ.

Fix some x ∈ X . For any α,γ ∈ [0, 1], note that for x , y ∈ X with

xk =















xα1 k = 1

x0
2 k = 2

x k otherwise

yk =















x0
1 k = 1

xγ2 k = 2

x k otherwise

we have

ρ(x , y) = G
�

α− γ
α+ γ

�

= G′
�

α− γ
α+ γ

�

Since for any r ∈ [−1, 1] there exists α,γ ∈ [0,1] such that α−γα+γ = r, we must have G′ = G.

Proof of Theorem 4.

Necessity of the axioms is immediate from the definition; we now show sufficiency.
Let ⪰ denote the stochastic order on X induced by ρ. By Moderate Transitivity, ⪰ is

transitive. Since ρ satisfies Continuity and Independence, ⪰ satisfies the vNM axioms and
so there exists a utility function u : R→ R such that U(x) =

∑

w u(w) fx(w) represents ⪰;
Dominance implies that u is strictly increasing.
Fix any four distinct prizes wa, wb, wc, wd ∈ R such that u(wa)> u(wb)> u(wc)> u(wd).

Consider any two lotteries x , y ∈ X . Enumerate Sx∪Sy∪{wa, wb, wc, wd} by w1, w2, ..., wn+1,
where w1 < w2 < ... < wn+1, and let K = {1, ..., n, n + 1}. Let X (K) denote the set
of finite-state lotteries with support on {w1, w2, ..., wn+1}. With some abuse of notation,
we let a, b, c, d denote the indices in K corresponding to prizes wa, wb, wc, wd . We have
u(w1) < u(w2) < ... < u(wn+1). With some abuse of notation, for any z ∈ X (K), let Fz(k) =
∑

w≤wk
fz(w) denote the value of the CDF of z at support point wk, and let u(k) = u(wk).

Identify each lottery z ∈ X (K) with its utility-weighted CDF vector z̃ ∈ Rn, where

z̃k = −Fz(k)(u(k+ 1)− u(k))
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for k = 1, 2, ..., n. Note that for any x , y ∈ X (K),
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|
=

U(x)− U(y)
dC DF(x , y)

We now seek to extend the space of utility-weighted CDF vectors to Rn in order to apply
Theorem 1. Let µ ∈ X (K) denote the lottery that is uniform over K; that is Fµ(k) =

k
n+1 .

Consider the set

V = {a ∈ Rn : ak = α( x̃k − µ̃k) : x ∈ X (K),α > 0)}.

Lemma 9. V = Rn.

Proof. By definition we have V ⊆ Rn. To see that Rn ⊆ V , take any a ∈ Rn. We will show
that a ∈ V . Define

β = max
k∈{2,3,...,n}

(n+ 1) [ak/(u(k+ 1)− u(k))− ak−1/(u(k)− u(k− 1))]

γ= (n+ 1)[a1/(u(2)− u(1))]

η= −(n+ 1)[an/(u(n+ 1)− u(n))]

and fix any α >max{β ,γ,η, 0}. Define H : K → R given by

H(k) =







Fµ(k)−
ak/(u(k+ 1)− u(k))

α
k < n+ 1

1 k = n+ 1

Since α > β , we have H(k + 1)− H(k) ≥ 0 for all k = 1, ..., n, and since α > η, we have
1 = H(n+ 1)− H(n) ≥ 0, and so H is increasing. Furthermore, since α > γ, H(1) ≥ 0, and
so H is positive on its domain. Since H(n+1) = 1, H is the CDF of a lottery in X (K), which
we denote by x . Note that by construction, for all k = 1, ..., n we have

α( x̃k − µ̃k) = α
�

−Fµ(k)(u(k+ 1)− u(k)) +
ak

α
+ Fµ(k)(u(k+ 1)− u(k))

�

= ak

which implies that a ∈ V .
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For any a, b ∈ V , let

L(a, b) = {(x , y) ∈ X (K)× X (K) : a = α( x̃ − µ̃), b = α( ỹ − µ̃), α > 0}.

Lemma 10. Let W ⊆ V finite. Then there exists α > 0 such that for all a ∈W , a = α( x̃ − µ̃)
for some x ∈ X (K).

Proof. Enumerate the elements of W by {a1, a2, ..., al}. For all m = {1,2, ..., l}, there exists
αm > 0, zm ∈ X (K) such that am = αm(z̃m − µ̃). Let α = maxmα

m, and for all m, define
xm ∈ X (K) satisfying (αm/α)zm + (1−αm/α)µ, and notice that am = α( x̃m − µ̃).

Define some φ : V × V → X (K)× X (K) that takes an arbitrary selection from L(a, b);
Lemma 10 implies L(a, b) is non-empty, φ is well-defined. For D̂ = {(a, b) ∈ V ×V : a ̸= b},
define ρ̂ : D̂ → [0, 1] by ρ̂(a, b) = ρ(φ(a, b)).

Lemma 11. ρ̂ is uniquely identified by ρ. That is, for any a, b ∈ V : for any (x , y), (x ′, y ′) ∈
L(a, b),. ρ(x , y) = ρ(x ′, y ′) and so ρ̂ does not depend on the choice of φ. Also, ρ̂ is a binary
choice rule, that is, ρ̂(a, b) = 1− ρ̂(b, a).

Proof. Fix some a, b ∈ V , and suppose (x , y), (x ′, y ′) ∈ L(a, b). It suffices to show that
ρ(x , y) = ρ(x ′, y ′). Since (x , y), (x ′, y ′) ∈ L(a, b), there exists α,α′ > 0 such that

a = α( x̃ − µ̃) = α′( x̃ ′ − µ̃)

b = α( ỹ − µ̃) = α′( ỹ ′ − µ̃)

Without loss, we can take α′ > α. For λ= α
α′ , the above inequalities directly imply that

x ′ = λx + (1−λ)µ

y ′ = λy + (1−λ)µ

and so by Independence of ρ, ρ(x , y) = ρ(x ′, y ′).

Finally to see that ρ̂ is a binary choice rule, take any a, b ∈ V . By Lemma 10, there
exists α > 0, x , y ∈ X (K) such that a = α( x̃ − µ̃), b = α( ỹ − µ̃); we have

ρ̂(a, b) = ρ(x , y)

= 1−ρ(y, x)

= 1− ρ̂(b, a)
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as desired.

Lemma 12. ρ̂(a, b)≥ 1/2 ⇐⇒
∑

k ak ≥
∑

k bk., and ρ̂ satisfies M1–M5.

Proof. Fix any a, b, c, a′, b′ ∈ V . By Lemma 10, there exists α > 0, x , y, z, x ′, y ′ ∈ X (K) such
that a = α( x̃ − µ̃), b = α( ỹ − µ̃), c = α(z̃ − µ̃), a′ = α( x̃ ′ − µ̃), b′ = α( ỹ ′ − µ̃).

To show the first claim, note that ρ̂(a, b) ≥ 1/2 ⇐⇒ ρ(x , y) ≥ 1/2 ⇐⇒ U(x) ≥
U(y) ⇐⇒

∑

k x̃k ≥
∑

k ỹk ⇐⇒
∑

k ak ≥
∑

k bk.

To see that ρ̂ satisfies Continuity, note that ρ̂ inherits continuity from ρ. To see that ρ̂
satisfies Linearity, take any λ ∈ [0,1].Note that by construction, λa + (1 − λ)c = α(λ x̃ +
(1−λ)z̃ − µ̃) and λb+ (1−λ)c = α(λ ỹ + (1−λ)z̃ − µ̃), and so

ρ̂(λa+ (1−λ)c,λb+ (1−λ)c) = ρ(λx + (1−λ)z,λy + (1−λ)z)

= ρ(x , y)

= ρ̂(a, b)

where the first and final equalities follow from Lemma 11, and the second equality follows
from Independence of ρ.

To show that ρ̂ satisfies Moderate Transitivity, suppose that ρ̂(a, b) ≥ 1/2, ρ̂(b, c) ≥
1/2. This implies that ρ(x , y) ≥ 1/2, ρ(y, z) ≥ 1/2, and so Moderate Transitivity of ρ im-
plies thatρ(x , z)≥min{ρ(x , y),ρ(y, z)}, which in turn implies that ρ̂(a, c)≥min{ρ(a, b),ρ(b, c)},
and so ρ̂ satisfies Moderate Transitivity.

To show that ρ̂ satisfies Dominance, by Lemma 11, it suffices to show that if ak ≥ bk for
all k, then x ≥ y . To see this, suppose that ak ≥ bk for all k; this implies that x̃k ≥ ỹk for
all k, which in turn implies that Fx(k)≤ Fy(k) for all k, and so x ≥ y .

Finally, to see that ρ̂ satisfies Simplification, consider a, b ∈ V with ρ(a, b) ≥ 1/2 and
a′ satisfying a′i = bi, a′k ̸= bk for all k ̸= i, j for i ̸= j, with ρ(a′, a)≥ 1/2.
By Lemma 10, there exists α > 0, x , x ′, y ∈ X (K) such that a = α( x̃− µ̃), a′ = α( x̃ ′− µ̃),

b = α( ỹ−µ̃), and Lemma 11 implies that ρ(x , y)≥ 1/2 and ρ(x ′, x)≥ 1/2. Define x̂ , x̂ ′, ŷ

by x̂ = 1/2x + 1/2µ, x̂ ′ = 1/2x ′ + 1/2µ, and ŷ = 1/2y + 1/2µ. By construction that
S x̂ = S x̂ ′ = S ŷ = {w1, ..., wn+1}, and so in particular S x̂ ′ ⊆ S x̂ ∪ S ŷ . Independence implies
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that ρ( x̂ , ŷ) ≥ 1/2, ρ( x̂ ′, x̂) ≥ 1/2. Moreover, since a′i = bi, we have F x̂ ′(wi) = F ŷ(wi),
and since a′k = ak for all k ̸= j, i, we have F x̂ ′(w) = F x̂(w) for all w ∈ S x̂ ∪ S ŷ/{wi, w j}.
Since ρ satisfies Simplification, we have ρ( x̂ ′, ŷ) ≥ ρ( x̂ , ŷ). Independence then implies
ρ(x ′, y) ≥ ρ(x , y), and so applying Lemma 11, we have ρ̂(a′, b) ≥ ρ̂(a, b), and so ρ̂
satisfies Simplification.

Using Lemma 12, Theorem 1 then implies that there exists a continuous, strictly increas-
ing G : [−1, 1]→ [0, 1], symmetric around 0, such that for all a, b ∈ Rn we have

ρ̂(a, b) = G

�
∑

k(ak − bk)
∑

k |ak − bk|

�

Lemma 11 then implies that for any x , y ∈ X (K), we have

ρ(x , y) = ρ̂( x̃ − µ̃, ỹ − µ̃)

= G

�
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|

�

= G
�

U(x)− U(y)
dC DF(x , y)

�

Let K = {K ⊆ S : |K | <∞, {wa, wb, wc, wd} ⊆ K}. The above implies that for any K ∈ K ,
there exists a continuous, strictly increasing GK : [−1,1] → [0,1] such that for all x , y ∈
X (K),

ρ(x , y) = GK

�

U(x)− U(y)
dC DF(x , y)

�

All that remains is to show that for any K , K ′ ∈K , GK = GK ′ . To see this, fix any K , K ′ ∈K ,
and for α≥ 0, γ≥ 0, consider x , y ∈ X with

x =
¦

wb w.p. 1 y =















wc w.p.
α/(u(wb)− u(wc))

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

wa w.p.
γ/(u(wa)− u(wb)

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

Note that x , y belong to both K and K ′, and so

ρ(x , y) = GK

�

U(x)− U(y)
dC DF(x , y)

�

= GK ′

�

U(x)− U(y)
dC DF(x , y)

�

and since U(x)−U(y)
dC DF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1]we can choose α,γ≥ 0 such that U(x)−U(y)

dC DF (x ,y) = r,
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we must have GK = GK ′ .

Finally, to show uniqueness, suppose, (G,β) and (G′, u′) both represent ρ. Define the
stochastic preference relation ⪰ as before. Since G and G′ are both increasing and symmet-
ric around 0, U(x) =

∑

s fx(w)u(w) and U ′(x) =
∑

s fx(w)u′(w) both represent ⪰, which
satisfies the vNM axioms, we can invoke vNM to conclude that there exists C > 0, b ∈ R
such that u′ = Cu+ b. This in turn implies that for all x , y ∈ X , we have

G

 

∑

s( fx(w)u(w)− f y(w)u(w))
∫ 1

0
u(F−1

x (q))− u(F−1
y (q))| dq

!

= G′
 

∑

s( fx(w)u′(w)− f y(w)u′(w))
∫ 1

0
u′(F−1

x (q))− u′(F−1
y (q))| dq

!

= G′
 

∑

s( fx(w)u(w)− f y(w)u(w))
∫ 1

0
u(F−1

x (q))− u(F−1
y (q))| dq

!

Now consider x , y ∈ X with

x =
¦

wb w.p. 1 y =















wc w.p.
α/(u(wb)− u(wc))

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

wa w.p.
γ/(u(wa)− u(wb)

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

since U(x)−U(y)
dC DF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1] we can choose α,γ ≥ 0 such that U(x)−U(y)

dC DF (x ,y) = r,
we must have G′ = G.

□

Proof of Theorem 5.

For x , y ∈ X , a, b ∈ R, define ax + b y ∈ X to be the payoff stream with the payoff function
amx + bmy . Let φτ ∈ X be the payoff stream that pays off 1 at time τ and 0 otherwise. We
start by observing a Lemma.

Lemma 13. Suppose U : X → R is linear. Then there exists d : [0,∞) → R such that
U(x) =

∑

t d(t)mx(t).

Proof. Let d : [0,∞) → R satisfying d(t) = U(φ t). Take any x ∈ X . Note that x =
∑

t∈Tx
mx(t)φ t , and so inductive application of linearity implies U(x) =

∑

t d(t)mx(t) as
desired.

Necessity of the axioms is immediate from the definitions; we now show sufficiency. Let
⪰ denote the complete binary relation on X induced by ρ. By Moderate Transitivity, ⪰ is
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transitive. Since ρ satisfies Continuity and Independence, by Theorem 8 in Herstein and
Milnor (1953), ⪰ is represented by a linear U : X → R, and Lemma 13 in turn implies the
existence of a d : [0,∞) → R such that U(x) =

∑

t d(t)mx(t). Dominance implies that
d(t) is positive and strictly decreasing. Extend d to [0,∞)∪ {+∞} by taking d(∞) = 0.
Fix any ta, t b, t c, td ∈ [0,∞), ta < t b < t c < td; we have d(ta)< d(t b)< d(t c)< d(td).

Now consider any x , y ∈ X . Let T = {0, ta, t b, t c, td} ∪ Tx ∪ Ty , and enumerate T ∪ {∞}
in increasing order by {t1, t2, ..., tn, tn+1}; we have d(t1) < d(t2) < ... < d(tn+1). Let
X (T ) = {x ∈ X : Tx ⊆ T} denote the set of payoff flows with support in T . Note that
all w ∈ X (T ) corresponds to a unique w̃ ∈ Rn satisfying w̃k = Mx(tk)(d(tk)− d(tk+1)). De-
note by ρ̃ the induced preference on Rn satisfying ρ̃( x̃ , ỹ) = ρ(x , y).

Claim 1. ρ̃( x̃ , ỹ)≥ 1/2 iff
∑

k x̃k ≥
∑

k ỹk. ρ̃ satisfies M1-M5.

Proof. Note that since
∑

k w̃k =
∑

t d(t)mw(t) for allw ∈ X (T ), we have
∑

k x̃k ≥
∑

k ỹk ⇐⇒
∑

t d(t)mx(t)≥
∑

t d(t)my(t) ⇐⇒ ρ(x , y)≥ 1/2 ⇐⇒ ρ̃( x̃ , ỹ)≥ 1/2.
It is immediate that ρ̃ inherits Continuity, Linearity, and Moderate Stochastic Transitiv-

ity from ρ. Dominance follows from the fact that for all x , y ∈ X (T ), Mx(t)≥ My(t) for all
t if and only if x̃k ≥ ỹk for all k.
Finally, to see that ρ̃ satisfies Simplification, take any x̃ , ỹ ∈ Rn with ρ̃( x̃ , ỹ)≥ 1/2 and

i ̸= j, and consider x̃ ′ satisfying x̃ ′i = ỹi, x̃ ′k = x̃k for k ̸= i, j, and with ρ̃( x̃ ′, x̃) = 1/2. By
construction, we have ρ(x , y) ≥ 1/2, ρ(x ′, x) ≥ 1/2. Since mx(t), my(t) ̸= 0 for finitely
many t, there exists η ∈ R such that mx(t) + η ̸= 0 and my(t) + η ̸= 0 for all t. Let
z ∈ X (T ) denote the payoff flow with mz(t) = η for all t ∈ T , and mz(t) = 0 otherwise.
Define x̂ , x̂ ′, ŷ ∈ X by x̂ = x + z, x̂ ′ = x ′ + z, ŷ = y + z. By Linearity of ρ, we have
ρ( x̂ , ŷ) ≥ 1/2, ρ( x̂ ′, x̂) ≥ 1/2. Note that by construction, Tx̂ = Tx̂ ′ = T ŷ = {t1, ..., tn}, and
so the support of x̂ ′ is contained in Tx̂ ∪ T ŷ . Furthermore, x̃ ′i = ỹi implies M x̂ ′(t i) = M ŷ(t i),
and x̃ ′k = ỹk for all k ̸= i, j implies M x̂ ′(t) = M x̂(t) for all t ∈ Tx̂ ∪ T ŷ/{t i, t j}, and so
since ρ satisfies Simplification, we have ρ( x̂ ′, ŷ)≥ ρ( x̂ , ŷ). Linearity of ρ then implies that
ρ(x ′, y)≥ ρ(x , y), and so by definition of ρ̃ we have ρ̃( x̃ ′, ỹ)≥ ρ̃( x̃ , ỹ) as desired.

Using Claim 1, Theorem 1 then implies that there exists a continuous, strictly increasing
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G : [−1,1]→ [0, 1], symmetric around 0, such that for all x , y ∈ X (T ) x̃ , ỹ ∈ Rn, we have

ρ(x , y) = ρ̃( x̃ , ỹ)

= G

�
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|

�

= G
�

U(x)− U(y)
dC PF(x , y)

�

Let T = {T ⊆ [0,∞) : |T | < ∞, {0, ta, t b, t c, td} ⊆ T}. The above implies that for
all T ∈ T , there exists a continuous, strictly increasing GT : [−1, 1] → [0, 1], symmetric
around 0 such that for any x , y ∈ X (T ),

ρ(x , y) = GT

�

U(x)− U(y)
dC PF(x , y)

�

Since for any x , y ∈ X , there exists some T ∈ T such that x , y ∈ X (T ), all that remains to
show that All that remains is to show that GT = GT ′ for any T, T ′ ∈ T . To see this, fix any
T, T ′ ∈ T , and consider x , y ∈ X with

mx(t) =















α/(d(ta)− d(tb)) t = ta

γ/(d(tb)− d(tc)) t = tc

0 otherwise

my(t) =







α/(d(ta)− d(tb)) + γ/(d(tb)− d(tc)) t = tb

0 otherwise

for some α≥ 0, γ≥ 0. Note that x , y belong to both T and T ′, and so we have

ρ(x , y) = GT

�

U(x)− U(y)
dC PF(x , y)

�

= GT ′

�

U(x)− U(y)
dC PF(x , y)

�

and since U(x)−U(y)
dC PF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1]we can choose α,γ≥ 0 such that U(x)−U(y)

dC PF (x ,y) = r,
we must have GT = GT ′ .

Finally, to show uniqueness, suppose (G, d) and (G′, d ′) both represent ρ. Define the
stochastic preference relation⪰ as before. Since G, G′ are both strictly increasing, symmetric
around 0, both U(x) =

∑

t d(t)mx(t) and U ′(x) =
∑

t d ′(t)mx(t) both represent ⪰. Since
d ≥ 0 and and d, d ′ are both strictly decreasing, we have d(0), d ′(0)> 0. Fix any t ∈ (0,∞),
and let λt = d(t)/d(0). By construction, U(φ t) = U(λtφ

0), and so φ t ∼ λtφ
0. Since U ′

also represents ⪰, we have U ′(φ t) = U ′(λtφ
0) =⇒ d ′(t) = λt d

′(0), and so d ′(t) = Cd(t)
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for all t ∈ [0,∞), where C = d ′(0)/d(0) > 0. This in turn implies that for all x , y ∈ X ,
{t0, t1, ..., tn} containing {0,∞}∪ Tx ∪ Ty ,

G
�

U(x)− U(y)
dC PF(x , y)

�

= G′
�

∑

k(d
′(tk)mx(tk)− d ′(tk)my(tk))

∑

k |Mx(tk)−My(tk)|(d ′(tk)− d ′(tk+1))

�

= G′
�

∑

k(d(tk)mx(tk)− d(tk)my(tk))
∑

k |Mx(tk)−My(tk)|(d(tk)− d(tk+1))

�

= G′
�

U(x)− U(y)
dC PF(x , y)

�

Consider x , y ∈ X with

mx(t) =















α/(d(ta)− d(tb)) t = ta

γ/(d(tb)− d(tc)) t = tc

0 otherwise

my(t) =







α/(d(ta)− d(tb)) + γ/(d(tb)− d(tc)) t = tb

0 otherwise

for some α ≥ 0, γ ≥ 0. Since U(x)−U(y)
dC PF (x ,y) =

α−γ
α+γ , for any r ∈ [−1,1] we can choose α,γ ≥ 0

such that U(x)−U(y)
dC PF (x ,y) = r, we must have G′ = G.

□

C.2 Multinomial Choice Results

We will prove our results for a more general signal structure, where

sx y = sgn(vx − vy) +
1

p

τx y
ex y

where the ex y are distributed according to a continuous distribution with density g that is
symmetric around 0 and satisfies the monotone likelihood ratio property: that is ∂

∂ x
g(x−t)

g(x) >

0 for all t > 0. We begin with the following basic observation:

Lemma 14. Consider a continuous distribution with density g that is symmetric around 0

and satisfies the monotone likelihood ratio property. The function g then has the following
properties:

1. g ′(x − t)g(x)− g(x − t)g ′(x)> 0 for all t > 0, x

2. g is unimodal; that is g ′(x) = −g ′(−x)≤ 0 for all x > 0
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3. g(t − x)> g(−t − x) for any t, x > 0

Proof. 1) follows directly from the definition of MLRP. To see 2), towards a contradiction
suppose g ′(x)> 0 for some x > 0. Then for any t > 0, 1) implies

g ′(x − t)≥
g(x − t)g ′(x)

g(x)
≥ 0

So for any y > x , g ′(y) > 0. Symmetry implies that for any y < −x , g ′(y) < 0, and so g

is not integrable, a contradiction. To see 3), note that by symmetry, g(t−x)
g(−t−x) = 1 for x = 0.

MLRP of g implies that g(t−x)
g(−t−x) > 1 for all x > 0 as desired.

The following observations pertain to finite set of options A. Enumerate A by 1, 2, ..., N

and let s = (si j)i< j collect all pairwise signals in A. Let X N
(k) denote the kth order statistic

among N draws from the prior distribution q. Let V N
(k) = E[X(N+1−k)], that is, V N

(k) gives the
expected value of an option if it is ranked kth. Let π : A→ A denote a permutation function;
let Π denote the set of permuation functions on A. With some abuse of notation, associate
each π with the event that the vi ’s are ordered according to π: that is π(i) = n means that
option i is ranked nth in the ordering. The posterior expected value of an option i given
signal s is then given by

E[vi|s] =
N
∑

n=1

V N
(n) · Pr(π(i) = n|s)

where

Pr(π(i) = n|s)∝
∑

π∈Π:π(i)=n

N
∏

k=1

∏

j<k

g
�

p

τ jk(s jk − sgn(π(k)−π( j))
�

Lemma 15. Take any permutation π satisfying π(i)< π( j). Then ∂
∂ ei j

Pr(π|s)> 0.
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Proof. We have

Pr(π|s) =

∏

k<l g
�p
τkl(skl − sgn(π(l)−π(k)))

�

∑

π′∈Π

∏

k<l g
�p
τkl(skl − sgn(π(l)−π(k)))

�

=
λg
�

p

τi jsi j −
p

τi j

�

αg
�

p

τi jsi j −
p

τi j

�

+ β g
�

p

τi jsi j +
p

τi j

�

=
λg
�

ei j +η−
p

τi j

�

αg
�

ei j +η−
p

τi j

�

+ β g
�

ei j +η+
p

τi j

�

where the λ,α,β ,η are non-negative and do not depend on ei j. This implies that

∂

∂ ei j
Pr(π|s) =

∂

∂ ei j









λ

α+ β
g
�

ei j+η+
p
τi j

�

g
�

ei j+η−
p
τi j

�









> 0

by MLRP of g.

Lemma 16. 1{E[vi|s]> E[v j|s]} is increasing in ei j.

Proof. We show the stronger result that E[vi|s]− E[v j|s] is increasing in si j. Note that

E[vi|s]− E[v j|s] =
∑

π∈Π

�

V N
(π(i)) − V N

(π( j))

�

Pr(π|s)

=
∑

π∈Π:π(i)<pi( j)

�

V N
(π(i)) − V N

(π( j))

�

Pr(π|s) +
∑

π∈Π:π(i)>pi( j)

�

V N
(π(i)) − V N

(π( j))

�

Pr(π|s)

Since V N
(π(i))−V N

(π( j)) > 0 if π(i)< π(k) and V N
(π(i))−V N

(π( j)) < 0 otherwise, Lemma 15 implies
that ∂

∂ ei j

�

E[vi|s]− E[v j|s]
�

> 0.

We now observe a result that will be useful for the proof of Proposition 2.

Lemma 17. Consider any two options x , y withτx y = 0. Then, for any z with vz >max{vy , vx}
ρ(x , y|{z}) is decreasing inτyz and increasing inτxz. Likewise, if vz <min{vy , vx}ρ(x , y|{z})
is increasing in τyz and decreasing in τxz.

Proof. Suppose that vz > max{vy , vx}; the proof for the case where vz < max{vy , vx} is
identical. For options i, j, k let πi jk denote the the permutation that ranks i first, j second,
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and k last. We have

Pr(πx yz|s) = g(exz − 2
p

τxz)g(eyz − 2
p

τyz)/Pr(s)

Pr(πxz y |s) = g(exz − 2
p

τxz)g(eyz)/Pr(s)

Pr(πzx y |s) = g(exz)g(eyz)/Pr(s)

Pr(πy xz|s) = g(exz − 2
p

τxz)g(eyz − 2
p

τyz)/Pr(s)

Pr(πyzx |s) = g(exz)g(eyz − 2
p

τyz)/Pr(s)

Pr(πz y x |s) = g(exz)g(eyz)/Pr(s)

and so we have

E[vy |s]− E[vx |s] =
�

V 3
(1) − V 3

(3)

�

(Pr(πyzx |s)− Pr(πxz y |s))

Lemma 15 then implies that E[vy |s]− E[vx |s] is strictly increasing in eyz and decreasing in
exz. This implies that for e∗yz(τxz, exz) defined implicitly by

g(exz − 2
p

τxz)g(e
∗
yz(τxz, exz)) = g(exz)g(e

∗
yz(τxz, exz)− 2

p

τyz)

for any realization of exz, we have E[vy |s] − E[vx |s] = 0 when eyz = e∗yz(τxz, exz), and so
E[vy |s] − E[vx |s] > 0 whenever eyz > e∗yz(τxz, exz), and E[vy |s] − E[vx |s] ≤ 0 otherwise.
Here we note three properties of e∗yz(τxz, exz):

1. e∗yz(τxz, exz) is strictly increasing in exz.

2. e∗yz(τxz, exz) is decreasing in τxz whenever exz ≤
p
τxz.

3. e∗yz

�

τxz,
p
τxz

�

=
p

τyz, and e∗yz(τxz, exz)≤
p

τyz whenever exz ≤
p
τxz.

Property follows 1 by implicitly differentiating the equality g(exz−2
p
τxz)

g(exz)
=

g(e∗yz(τxz ,exz)−2
p
τyz)

g(e∗yz(τxz ,exz))

and MLRP. Property 2 follows from differentiating the same equality, MLRP, and part 2 of
Lemma 14. Property 3 follows from symmetry of g and Property 1. We have

ρ(y; x |z) =
∫

p
τxz

exz=−∞

∫ ∞

eyz=−∞
1
�

E[vy |s]− E[vx |s]≥ 0
	

g(exz)g(eyz) deyzdexz

+

∫ ∞

exz=
p
τxz

∫ ∞

eyz=−∞
1
�

E[vy |s]− E[vx |s]≥ 0
	

g(exz)g(eyz) deyzdexz
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Note that
∫ ∞

exz=
p
τxz

∫ ∞

eyz=−∞
1
�

E[vy |s]− E[vx |s]≥ 0
	

g(exz)g(eyz) deyzdexz

=

∫ ∞

exz=
p
τxz

∫ ∞

eyz=−∞
1
�

g(exz − 2
p

τxz)g(eyz)− g(exz)g(eyz − 2
p

τyz)≥ 0
	

g(exz)g(eyz) deyzdexz

=

∫

p
τxz

e′xz=−∞

∫ ∞

e′yz=−∞
1
¦

g(e′xz)g(e
′
yz − 2

p

τyz)− g(e′xz − 2
p

τxz)g(e
′
yz)≥ 0

©

g(e′xz − 2
p

τxz)g(e
′
yz − 2

p

τyz)de′yzde′xz

=

∫

p
τxz

e′xz=−∞

∫ ∞

e′yz=−∞
1
�

E[vy |s]− E[vx |s]≤ 0
	

g(e′xz − 2
p

τxz)g(e
′
yz − 2

p

τyz)de′yzde′xz

where the third line uses the change of variables e′xz = 2
p
τxz− exz, e′yz = 2

p

τyz− eyz. This
implies that

ρ(y; x |z) =
∫

p
τxz

exz=−∞

∫ ∞

eyz=e∗yz(τxz ,exz)

g(exz)g(eyz) deyzdexz

+

∫

p
τxz

e′xz=−∞

∫ e∗yz(τxz ,exz)

eyz=−∞
g(exz − 2

p

τxz)g(eyz − 2
p

τyz) deyzdexz

=

∫

p
τxz

exz=−∞

∫ ∞

eyz=e∗yz(τxz ,exz)

g(exz)g(eyz) deyzdexz

+

∫ −pτxz

exz=−∞

∫ e∗yz(τxz ,exz+2
p
τxz)

eyz=−∞
g(exz)g(eyz − 2

p

τyz) deyzdexz
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and so

∂

∂ τxz
ρ(y; x |z)

=
1

2
p
τxz





∫ ∞

eyz=e∗yz(τxz ,
p
τxz)

g
�
p

τxz

�

g(eyz) deyz −
∫ e∗yz(τxz ,

p
τxz)

eyz=−∞
g
�

−
p

τxz

�

g(eyz − 2
p

τyz) deyz





+

∫

p
τxz

exz=−∞
−
∂

∂ τxz
e∗yz(τxz , exz)g(exz)g(e

∗
yz(τxz , exz)) dexz

+

∫ −pτxz

exz=−∞

�

∂

∂ τxz
e∗yz(τxz , exz + 2

p

τxz) +
1
p
τxz

∂

∂ exz
e∗yz(τxz , exz + 2

p

τxz)

�

g(exz)g(e
∗
yz(τxz , exz + 2

p

τxz)− 2
p

τyz) dexz

=
g(pτxz)
2
p
τxz

�

G
�

−
p

τyz

�

− G
�

e∗yz(τxz ,
p

τxz

�

− 2
p

τyz)
�

+

∫

p
τxz

exz=−∞
−
∂

∂ τxz
e∗yz(τxz , exz)

�

g(exz)g(e
∗
yz(τxz , exz))− g(exz − 2

p

τxz)g(e
∗
yz(τxz , exz)− 2

p

τyz)
�

dexz

+

∫ −pτxz

exz=−∞

1
p
τxz

∂

∂ exz
e∗yz(τxz , exz)g(exz)g(e

∗
yz(τxz , exz + 2

p

τxz)− 2
p

τyz) dexz

The first term is equal to 0 since e∗(τxz,
p
τxz) =

p

τy x . To see that the second term is non-
negative, note that on the domain of integration, ∂

∂ τxz
e∗yz(τxz, exz) ≤ 0 (Property 2), and

e∗yz(τxz, exz)≤
p

τyz (Property 3) and so applying part 3) of Lemma 14, g(e∗yz(τxz, exz))≥
g(e∗yz(τxz, exz)− 2

p

τyz) and g(exz)> g(exz − 2
p
τxz). To see that the third term is strictly

positive, note that ∂
∂ exz

e∗yz(τxz, exz)> 0 (Property 1). We therefore have ∂
∂ τxz
ρ(y, x |{z})> 0.

A symmetric argument shows that ∂
∂ τyz
ρ(y, x |{z})< 0.

Proof of Proposition 2

Suppose vx , vy > vz, and τyz > τxz. Lemma 17 implies that if τx y = 0, ρ(y, z|{z}) > 1/2.
The desired result then follows from the fact that ρ(y, z|{z}) is continuous in τx y .

□

Proof of Proposition 3

Let πk denote the ordering over x , z1, ..., zn in which x is ranked kth and the z j are ordered
correctly, and let pk(s) denote the DM’s posterior belief over πk given signal s, where p(s) =
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(p1(s), ..., pn+1(s)). Note that

E[vx |s] =
n+1
∑

k=1

V N
(k)pk(s)

E[v j|s] =

� j
∑

k=1

pk(s)

�

V N
( j+1) +

 

n+1
∑

k= j+1

pk(s)

!

V N
( j) ∀ j = 1, ..., n

where V N
(k) is the expectation of the kth order statistic from N = n+ 1 draws over the DM’s

prior of Q.
To show (i), consider the case where τ = 0. We have that with probability 1, pk(s) =

1/n+ 1 for all k ∈ {1, ..., n+ 1}. Let µ denote the expectation of Q. By symmetry of Q, we
have V N

(k) = 2µ− V N
(N+1−k) for all k = 1, ..., N , and so E[vx |s] = µ with probability 1.

First consider the case where n is odd, and let j∗ = n+1
2 . We have E[v j∗ |s] =

1
2 V N

j∗ +
1
2 V N

j∗+1 = µ with probability 1, and so E[vx |s] = E[v j∗ |s] and E[vx |s] ̸= E[vk|s] for any
k ̸= j∗ with probability 1. This implies that P(R(x , Z) = j∗) = P(R(x , Z) = j∗ + 1) = 1/2,
and so E[R(x , Z)] = n+2

2 as desired.
Now consider the case where n is even. Let j∗ = n/2, k∗ = n/2+ 1. Since V N

(k) = 2µ−
V N
(N+1−k), we have V N

( j∗) > V N
( j∗+1) = µ = V N

(k∗) > V N
(k∗+1). This implies that with probability 1,

E[v j∗ |s] =
n/2
n+1 V N

( j∗)+1 +
n/2+1
n+1 V n

( j∗) > µ, and E[vk∗ |s] =
n/2+1
n+1 V N

(k∗)+1 +
n/2
n+1 V n

(k∗) < µ, which in
turn implies that E[vk∗ |s] < E[vx |s] < E[v j∗ |s], and so we have R(x , Z) = k∗ = n+2

2 with
probability 1. This implies that E[R(x , Z)] = n+2

2 .
To show (2), Let R(s) denote the DM’s switching point given the signal s: that is, R(s) = R

if E[vx |s] > E[vk|s] for all k ≥ R and E[vx |s] < E[vk|s] for all k < R. Note that R(s) is well
defined for any τ > 0 since ties in posterior expected values occur with probability 0 if
τ > 0. Note that there exists ε > 0 such that whenever pk(s) > 1 − ε, R(s) = k. Since
pR∗(x ,Z)(s)→p 1 as τ→∞, R(s)→p R∗(x , Z) as τ→∞.

□
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C.3 Other Results

Proof of Proposition 1

Note that since H is strictly increasing,

max
g∈Γ (x ,y)

τL1
x y(g) = max

g∈Γ (x ,y)
H

�

|EU(x)− EU(y)|
∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|

�

= H





|EU(x)− EU(y)|
min

g∈Γ (x ,y)

∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|





Let x̃ and ỹ denote the utility-valued lotteries induced by x and y , defined by the
quantile functions defined by F−1

x̃ (q) = u(F−1
x (q)) and F−1

ỹ (q) = u(F−1
y (q)) for all q ∈ [0,1].

Note that

min
g∈Γ (x ,y)

∑

wx ,w y

|g(wx , w y)(u(wx)− u(w y))|= min
g∈Γ ( x̃ , ỹ)

∑

wx ,w y

g(wx , w y)|(wx −w y)|

=

∫ ∞

−∞
|F x̃(w)− F ỹ(w)| dw

=

∫ 1

0

|F−1
x̃ (q)− F−1

ỹ (q)| dq

= dC DF(x , y)

Where the second equality follows fromVallender (1974), since min
g∈Γ ( x̃ , ỹ)

∑

wx ,w y
|g(wx , w y)(wx−

w y)| is the 1-Wassertein metric between the distributions F x̃ and F ỹ , the third equality fol-
lows from a change of variables, and the final equality follows from the definition of x̃ , ỹ .

□

Proof of Proposition 4

Note that since H is strictly increasing,

max
b∈B(x ,y)

τL1
x y(b) = max

b∈B(x ,y)
H

�

|DU(x)− DU(y)|
∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|

�

= H





|DU(x)− DU(y)|
min

b∈B(x ,y)

∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|




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All that remains is to show that for d b
L1(x , y) ≡

∑

tx ,t y
|b(t x , t y)d(t x) − d(t y)|, we have

min
b∈B(x ,y)

d b
L1(x , y) = dC PF(x , y).

Without loss, normalize d(0) = 1, and fix any x , y . Let w =
∑

t mx(t) +
∑

t my(t) de-
note the total payoff delivered by both x and y . Let B(x , y) contain all b ∈ B(x , y) satis-
fying b(t x , t y) > 0 for all t x , t y . Note that this implies that for all b ∈ B(x , y), we have
∑

tx ,t y
b(t x , t y)≤ w. Since x and y have positive payouts, we have

max
b∈Bx ,y

d b
L1(x , y) = max

b∈Bx ,y

d b
L1(x , y)

We will now show that maxb∈Bx ,y
d b

L1(X , Y ) = dC PP(x , y). For all b ∈ B(X , Y ), consider a
joint density b̃ over [0,1]2 with mass function satisfying

b̃(wx , w y) =







b(d−1(wx), d−1(w y)/w wx ̸= 0 or w y ̸= 0

1−
∑

{(tx ,t y ):¬(tx=∞,t y=∞)}
b(t x , t y)/w wx = w y = 0

Note that b̃ is well-defined since b(t x , t y) > 0 for all t x , t y and
∑

tx ,t y
b(t x , t y)/w ≤ 1 by

construction.
Let b̃x and b̃y denote the marginal distributions of b̃. Note that for all t ∈ [0,∞), we

have

b̃x(d(t)) =
∑

w y

b̃(d(t), w y)

=
∑

t y

b̃(d(t), d(t y))/w

=
∑

t y

b(t, t y)/w

= mx(t)/w

where the third equality follows from the fact that
∑

t y
b(t, t y) = mx(t) for all t ∈ [0,∞),

and so

b̃x(w) = hx(w)≡







mx(d−1(w))/w w ∈ (0, 1]

1−
∑

t mx(t)/w w ∈ 0
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A similar argument implies that

b̃y(w) = hy(w)≡







my(d−1(w))/w w ∈ (0, 1]

1−
∑

t my(t)/w w ∈ 0

Let B̃(x , y) denote the set of joint densities g(wx , w y) over [0, 1]2 with marginals given
by gx = hx and g y = hy . The above implies that for all b ∈ B(x , y), b̃ ∈ B̃(x , y). We will
now show that for all g ∈ B̃(x , y), there exists b ∈ B(x , y) such that b̃ = g.
Fix any g ∈ B̃(x , y), and define b : R+ ∪ {+∞}×R+ ∪ {+∞}→ R by

b(d−1(wx), d−1(w y)) =







g(wx , w y) ·w wx ̸= 0 or w y ̸= 0

0 wx = w y = 0

for all wx , w y ∈ [0,1]2. By construction,
∑

tx ,t y
b(t x , t y)≤ w and b(t x , t y)> 0. Furthermore,

for all t ∈ [0,∞) we have

∑

t y

b(t, t y) =
∑

w y

b(t, d−1(w y))

=
∑

w y

g(d(t), w y) ·w

= hx(d(t)) ·w

= mx(t)

where the third equality follows from the fact that gx = hx and the last equality follows
from the definition of hx . We similarly have

∑

tx
b(t x , t) = my(t) for all t ∈ [0,∞), and so

b ∈ B(x , y). Note that by construction, b̃ = g as desired. Now since

d b
L1(x , y) =

∑

tx ,t y

b(t x , t y)|d(t x)− d(t y)|

= w
∑

wx ,w y

b̃(wx , w y)|wx −w y |

the fact that for any b ∈ B(x , y), b̃ ∈ B̃(x , y) and that for any g ∈ B̃(x , y), there exists
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b ∈ B(x , y) s.t. b̃ = g implies that

min
b∈B(x ,y)

d b
L1(x , y) = min

g∈B̃(x ,y)
w
∑

wx ,w y

g(wx , w y)|wx −w y |

= w

∫ 1

0

|Hx(w)−H y(w)| dw

where the second line follows from Vallender (1974), for Hx and H y the CDFs of hx , hy .
Enumerate the elements of Tx y by 0 = t0, t1, ..., tn =∞ and let wk = d(tk) for all k =
0, 1, ..., n. Note that for all k = 1, ..., n,

Hx(wk) =
n−1
∑

j=k

mx(d
−1(w j))/w+ 1−

n−1
∑

j=1

mx(t j)/w

= 1−
k−1
∑

j=1

mx(t j)/w

= 1−Mx(tk−1)/w

By a similar argument for H y , we have

Hx(wk) =







1−Mx(tk−1)/w k ≥ 1

1 k = 0
H y(wk) =







1−My(tk−1)/w k ≥ 1

1 k = 0

We therefore have

min
b∈B(x ,y)

d b
L1(x , y) = w

n
∑

k=1

|Hx(wk)−H y(wk)|(wk−1 −wk)

=
n
∑

k=1

|Mx(tk−1)−My(tk−1)|(d(tk−1)− d(tk))

= dC PF(x , y)

as desired.
□
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Proof of Proposition 5

Suppose a multinomial choice rule ρ is represented by (Q, v,τ) and (Q′, v′,τ′). With some
abuse of notation, let ρ also denote the binary choice rule induced by the restriction of ρ
to binary menus.
Let ⪰ denote the stochastic order induced by ρ. Since ρ is represented by (Q, v,τ), we

have ρ(x , y) = Φ(sgn(v(x)−v(y))τ(x , y)), and so x ⪰ y iff v(x)≥ v(y). Similarly, since ρ
is represented by (Q′, v′,τ′), x ⪰ y iff v′(x)≥ v′(y). This implies that for any x , y , we have
v(x) = v(y) ⇐⇒ x ∼ y ⇐⇒ v′(x) = v′(y), and so the transformation φ : v(X ) → R
satisfying φ(v(x)) = v′(x) for all x ∈ X is well defined. To see that φ is strictly increasing,
suppose not; there exists x , y ∈ X such that v(x) > v(y) but φ(v(x)) ≤ φ(v(y)); the
former implies that x ≻ y but the latter implies that y ⪰ x , a contradiction.
To see that τ = τ′, fix any (x , y) ∈ D. First consider the case where v(x) = v(y); by

definition of τ, τ(x , y) = 0. But since v(x) = v(y) =⇒ v′(x) = v′(y), we also have
τ′(x , y) = 0. Now consider the case where v(x) ̸= v(y); without loss, assume v(x)> v(y).
By the above result, we have sgn(v(x) − v(y)) = sgn(v′(x) − v′(y)) = 1, which in turn
implies that ρ(x , y) = Φ(τ(x , y)) = Φ(τ′(x , y)). Since Φ is strictly increasing, we have
τ(x , y) = τ′(x , y), and so τ= τ′ as desired.

□

D Appendix: Experiments

Here we provide more details on the design of our multi-attribute and intertemporal choice
experiments, in addition to experimental instructions, comprehension checks, and sample
choice interfaces for these experiments.

D.1 Multi-Attribute Choice

D.1.1 Multiattribute Choice: Experimental Details

Problem Selection. In our multiattribute choice experiments, we collected data on 662
choice problems in total: 582 problems in the main problem sample, and 80 problems in a
robustness problem sample.
The main sample consists of 80 two-attribute problems, 432 three-attribute problems,

and 104 four-attribute problems. The three-attribute choice options are characterized by a
monthly fee, a per-GB usage rate (where the fictional consumer has a monthly usage of 6
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GB), and an annual device cost; the two-attribute choice options consist only of a monthly
fee and usage rate, and the four-attribute choice options additionally contain a quarterly wi-
fi charge. The two-attribute problems are generated by drawing a value difference (in bonus
payment terms) from one of two values in {$3.84, $5.76} and an L1-ratio from one of 12
values in {1.00, 0.94,0.89, 0.84,0.80, 0.76,0.70, 0.59,0.48, 0.39,0.30, 0.20}.3⁰ The three-
and four-attribute problems are generated by similarly drawing a value difference and L1

ratio value, which determines the summed attribute-wise advantages and disadvantages in
the comparison, and randomizing how the advantage and disadvantages are split across
the attributes.
The robustness sample consists of 10 two-attribute problems, 60 three-attribute prob-

lems, and 10 four-attribute problems that are identical in structure to those main sample
except for the attribute weights: in the robustnesss sample, the fictional consumer has a
monthly usage of 12 GB. Each problem in the robustness sample is constructed to match
the utility-weighted attribute values of a corresponding problem in the main sample.

Sample Collection and Screening.We collect choice data from the two problem samples in
separate experiments. In the main experiment, each subject completes 50 choice problems
in total: 30 randomly drawn unique three-attribute problems, 10 repeat problems drawn
from these 30 unique problems, and 10 randomly drawn unique two- or four-attribute prob-
lems. Participants first complete the 40 three-attribute problems; for their last 10 problems,
they will see either two- or four-attribute problems, with 30% of participants randomly
assigned to the two-attribute problems and the remaining participants assigned to the four-
attribute problems. The robustness experiment follows an identical structure, except that
50% of participants are randomly assigned to the two-attribute problems with the remain-
ing participants assigned to the four-attribute problems.
Participants for both the main and robustness experiments were recruited from Prolific,

screening for subjects based in U.S. with a Prolific approval rating greater than or equal
to 98% and with 500 or more completes using Prolific’s pre-screening tools. Participants
who did not pass a comprehension check were screened out of the study. As pre-registered,
data for both the main and robustness experiment were collected in waves to reach a pre-
specified number of participants who did not report using a calculator in the experiment:
350 for the main experiment and 48 in the robustness experiment. In total, 428 subjects
were recruited for the main experiment (357 non-calculator users) and 65 subjects were

3⁰Due to rounding in the attribute values, the actual L1 ratios of the problems deviate slightly from these
values.
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recruited for the robustness experiment (50 non-calculator users). The pre-registration for
these expeirments can be accessed at https://aspredicted.org/TNQ_XBQ.

D.1.2 Multiattribute Choice: Screenshots
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D.2 Intertemporal Choice

D.2.1 Intertemporal Choice: Experimental Details

Problem Selection. In our intertemporal choice experiments, we collected data on 1100
choice problems in total: 900 problems in the broad problem sample, and 200 problems in
a targeted problem sample.
In the broad problem sample, choice options contain either one or two payouts; in to-

tal, there are 300 1-payout vs. 1-payout choice problems, 300 1-payout vs. 2-payout choice
problems, and 300 2-payout vs. 2-payout choice problems. For each choice problem, the
options are generated by sampling payout amounts and payout delays. The delays of each
payout (in days) are drawn from {0, 12, 24, 48, 72, 108, 144, 180, 216, 264, 312, 360,
420, 480, 540, 600, 660, 720}, and the monetary amount of each payout is drawn from
{$0,$0.50, ..., $20} for two-payout options and {$0,$0.50, ..., $40} for one-payout options.
Rather than uniformly sampling from these ranges, we employ a sampling procedure that
1) undersamples dominance problems, 2) excludes problems involving very large value dif-
ferences and problems near indifference, and 3) stratifies by CPF ratio and value difference
(computed using a benchmark discount factor).
In the selected problem sample, problems are generated from sampling the same payout

amounts and delays as for the broad problem sample, but are generated using a sampling
procedure that holds fixed the threshold discount rate that makes the two options in the
choice problem indifferent for a DM with exponential time preferences. In particular, 100
problems in the selected sample involve a threshold monthly discount rate of 1 (meaning
that any individual with exponential time preferences should prefer the option that pays off
earlier), and 100 problems involve a threshold monthly discount rate of 0.747. Within each
of these subsamples, 50 problems involve 1-payout vs 2-payout options, and 50 problems
involve 2-payout vs. 2-payout options. The sampling procedure for the selected problem
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sample was additionally designed to stratify by CPF ratio and to reduce variation in the
value difference.

Sample Collection and Screening. In the main experiment, each subject completes 50
choice problems in total: 40 unique problems randomly drawn from the combined sample
of 1100 problems, and 10 repeat problems randomly drawn from these 40 unique problems.
Participants were recruited from Prolific, screening for subjects based in U.S. with a Prolific
approval rating greater than or equal to 98% andwith 500 ormore completes using Prolific’s
pre-screening tools. Participants who did not pass a comprehension check were screened
out of the study. 829 subjects in total were recruited for the study. The pre-registration for
this experiment can be accessed at https://aspredicted.org/QCJ_S81.

D.2.2 Intertemporal Choice: Screenshots
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E Appendix: Structural Estimations

We estimate several standard models of value in multi-attribute objects, intertemporal pay-
offs, and lotteries, assuming logit choice probabilities:

ρ(x , y) = sgmη(V (x)− V (y))

where sgmη(t) = 1/(1+ exp(−ηt)) is the sigmoid function for η≥ 0. For each of these
standard models, we jointly estimate a parameterized V function and the logit noise param-
eter η. We additionally estimate our parameterized model of similarity-based complexity
from Section 2.5,
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ρ(x , y) = G
�

U(x)− U(y)
d(x , y)

�

,

G(r) =











(1−κ)− (0.5− κ)
(1− r)γ

(rψ + (1− r)ψ)1/ψ
r ≥ 0

κ+ (0.5−κ)
(1+ r)γ

(rψ + (1− r)ψ)1/ψ
r < 0

for κ ∈ [0, 0.5],γ,ψ > 0. Unless stated otherwise, we will use the 2-parameter functional
form of G in which we fix ψ = 1. In each domain, we jointly estimate the parameterized
value-dissimilarity ratio and the G-function parameters κ and γ (and ψ, if applicable). Be-
low we give the equations for each model estimated in the paper.

E.1 Multi-attribute Choice

In the following structural equations, we normalize utility weights βk to be equal to 1: that
is, the true value of option x is given by U(x) =

∑

k xk.

Salience.We use the continuous salience-weighting model described in Appendix C of Bor-
dalo et al. (2013), where

ρ(x , y) = sgmη(VBGS(x |{x , y})− VBGS(y|{x , y}))

VBGS(x |{x , y})≡
∑

k

xk

�

1+
|xk − (xk + yk)/2|
|xk|+ |(xk + yk)/2|

�1−δ

where δ ≤ 1. This model is parameterized by (η,δ).

Focusing. We use the power function parameterization described in Kőszegi and Szeidl
(2013), where

ρ(x , y) = sgmη(VKS(x |{x , y})− VKS(y|{x , y}))

VKS(x |{x , y}) =
∑

k

xk|xk − yk|θ

where θ ≥ 0. This model is parameterized by (η,θ ).

Relative Thinking.We use the power function parameterization described in Bushong et al.
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(2021), where

ρ(x , y) = sgmη(VBRS(x |{x , y})− VBRS(y|{x , y}))

VBRS(x |{x , y})≡
∑

k

xk

�

(1−ω) +ω
1

|xk − yk|+ ξ

�

where ω ∈ [0,1], ξ > 0. This model is parameterized by (η,ω,ξ).

L1 Complexity. Choice probabilities in our model is given by

ρ(x , y) = G

�

U(x)− U(y)
dL1
(x , y)

�

where dL1
is defined as in Definition 1. We estimate both the 2 and 3 parameter versions of

G; our model is parameterized by (κ,γ) for the former and (κ,γ,ψ) for the latter.

E.2 Intertemporal Choice

Exponential Discounting. Choice probabilities are given by

ρ(x , y) = sgmη(PV (x)− PV (y))

PV ≡
∑

t

δt mx(t)

The parameters of the model are given by (η,δ). This model is also used for the estimation
of individual-level discount factors used in Figure 10 and Table 7.

Hyperbolic Discounting.We use the hyperbolic discount function proposed in Loewenstein
and Prelec (1992):

ρ(x , y) = sgmη(Vhb(x)− Vhb(Y ))

Vhb ≡
∑

t

(1+υt)−ζ/υmx(t)

for υ,ζ > 0. The parameters of this model are (η,υ,ζ).
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CPF Complexity. Choice probabilities in our model are given by

ρ(x , y) = G
�

PV (x)− PV (y)
dC PF(x , y)

�

where dC PF(x , y) is defined as in Definition 4. Our model is parameterized by (δ,κ,γ).

E.3 Choice Under Risk

Expected Utility. To estimate the global preference parameters used in Figure 5 and Table
9, we assume agents have a bernoulli utility function that exhibits constant relative risk
aversion for both pure-gain and pure-loss lotteries:

ρ(x , y) = sgmη(EUs ym(x)− EUs ym(y))

EUs ym(x)≡
∑

w

fx(w)us ym(w)

us ym(w)≡







wα w≥ 0

−(−w)α w< 0

for α > 0. This model is parameterized by (η,α). This model is also used for the estimation
of individual-level preferences used in Figure 11 and Table 10.

Reference-Dependence. The DM has expected utility preferences, where the (two param-
eter) Bernoulli utility function allows for separate curvature parameters for positive and
negative payouts.

ρ(x , y) = sgmη(EUrd(x)− EUrd(y))

EUrd(x)≡
∑

w

fx(w)urd(w)

urd(w)≡







wα w≥ 0

−(−w)β w< 0

for α,β > 0. This model is paramaterized by (η,α,β).

Cumulative Prospect Theory. We also estimate a model where the agent exhibits proba-
bility weighting and loss aversion, following Tversky and Kahneman (1992). We use the
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probability weighting function given by Gonzalez and Wu (1999). Let the distinct payoffs
in a lottery x be ordered by w−m, ..., w−1, w0, w1, ..., wn, where w−m, ..., w0 indicate nega-
tive payoffs and w0, ..., wn indicate positive payoffs, with p−m, ..., pn denoting the associated
probabilities. The value of x is given by

Ucpt(x) =
0
∑

k=−m

upt(wk)πk +
n
∑

k=0

upt(wk)πk,

πn = q(pn), π−m = q(p−m)

πk = q(pk + ...+ pn)− q(pk+1 + ...+ pn), 0≤ k < n

πk = q(p−m + ...+ pk)− q(p−m + ...+ pk−1), −m< k < 0

q(p) =
χpν

χpν + (1− p)ν

upt(w)≡







wα w≥ 0

−λ(−w)β w< 0

for α,β ,χ,ν,λ > 0. Choice probabilities are given by

ρ(x , y) = sgmη(Ucpt(x)− Ucpt(y))

This model is parameterized by (η,α,β ,χ,ν,λ).

CDF Complexity. We estimate two versions of our model: one that assumes risk neutrality,
and one that allows for utility curvature. In the risk neutral model, choice probabilities are
given by

ρ(x , y) = G
�

EU(x)− EU(y)
dC DF(x , y)

�

EU(x) =
∑

w wfx(w) and dC DF are defined as in Definition 3 with the Bernoulli utility
function u given by u(x) = x . This model is parameterized by (κ,γ).
In the model that allows for utility curvature, choice probabilities are given by

ρ(x , y) = G
�

EU(x)− EU(y)
dC DF(x , y)

�

EU(x) =
∑

w us ym(w) fx(w) and dC DF are defined as in Definition 3 with the Bernoulli utility
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function u= us ym. This model is parameterized by (κ,γ,α).
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