
ONLINE APPENDIX:
TRADEOFFS AND COMPARISON COMPLEXITY

F Additional Proofs

F.1 Characterization Results

Proof of Theorem 2.

The proof of necessity is routine. Theorem 1 covers sufficiency for the n ≥ 3 case. We now
show sufficiency in the case where n = 2; assume that M1–M6 hold. Note that Claim 1 in
the proof of Theorem 1 continues to hold in this case; that is, that for any z ∈ Rn satisfying
∑

k zk ≥ 0, ρ(z, 0) = ρ(d+(z)e1 − d−(z)e2, 0). To see this, note that if z1 ≥ 0, z2 ≥ 0, the
desired equality follows from Dominance; if not then either i) z1 > 0, z2 < 0 or ii) z1 < 0

and z2 > 0. In case i), the equality is immediate since z = d+e1+d−e2, which in conjunction
with Exchangeability, implies the desired equality for case ii). Following the steps in Claims
2 and 3 in the proof of Theorem 1 completes the proof of sufficiency. Note that the argument
for uniqueness in Theorem 1 holds for n= 2, and so uniqueness holds as well.

□

Proof of Theorem 3.

The proof of necessity of M1, M4–M5, andM7 are routine. To see that M3 (Moderate Transi-
tivity) is necessary, consider x , y, z withρ(x , y)≥ 1/2 andρ(y, z)≥ 1/2. If dL1(x , y), dL1(y, z),
dL1(x , z) > 0, then the restriction of ρ to {x , y, z} belongs to the moderate utility class
studied in He and Natenzon (2023a) and so by Theorem 1 of this paper we can con-
clude that this restriction satisfies Moderate Transitivity. There are four additional cases to
consider. Case 1: suppose dL1(x , y) = 0. We then have ρ(x , z) = ρ(y, z) and ρ(x , y) =
1/2, so either ρ(x , z) > min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(y, z) = ρ(x , z). Case 2:
dL1(y, z) = 0. We then have ρ(x , z) = ρ(x , y) and ρ(y, z) = 1/2, and so again either
ρ(x , z) > min{ρ(x , y),ρ(y, z)} or ρ(x , z) = ρ(y, z) = ρ(x , z). Case 3: dL1(x , z) = 0. Here
we have ρ(x , z) = 1/2, and ρ(x , y) = ρ(z, y) ≥ 1/2 and ρ(y, z) ≥ 1/2, which implies
ρ(y, z) = ρ(x , y) = 1/2; we therefore have ρ(x , y) = ρ(y, z) = ρ(x , z). Finally, consider
dL1(x , y) = dL1(x , z) = dL1(y, z) = 0; here we have ρ(x , y) = ρ(y, z) = ρ(x , z), and so
Moderate Transitivity holds in all cases.
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To see that M8 (Tradeoff Congruence) is necessary, take (x , y), (y, z) ∈ D congruent
such that ρ(x , y),ρ(y, z) ≥ 1/2. Note that if dL1(x , z) = 0, then ρ(x , z) = 1/2 and since
ρ satisfies Moderate Transitivity we have ρ(x , y) = ρ(y, z) = 1/2 and we are done. Now
consider the case where dL1(x , z) ̸= 0. Note that

ρ(x , z) = G

�
∑

k(uk(xk)− uk(zk))
∑

k |uk(xk)− uk(zk)|

�

= G

�
∑

k(uk(xk)− uk(yk) + uk(yk)− uk(zk))
∑

k |uk(xk)− uk(yk) + uk(yk)− uk(zk)|

�

= G
�

U(x)− U(y) + U(y)− U(z)
dL1(x , y) + dL1(y, z)

�

Where the final equality holds because congruence implies that uk(xk)−uk(yk) and uk(yk)−
uk(zk) must either be both positive or negative. This implies that if either dL1(x , y) = 0 or
dL1(y, z) = 0, we are done. Now consider the case where dL1(x , y), dL1(y, z) > 0, and
suppose ρ(y, z)≤ ρ(x , y); this implies U(y)−U(z)

dL1(y,z) ≤
U(x)−U(y)

dL1(x ,y) . The above implies

ρ(x , z) = G

 U(x)−U(y)
dL1(y,z) +

U(y)−U(z)
dL1(y,z)

dL1(x ,y)
dL1(y,z) + 1

!

≤ G

 U(x)−U(y)
dL1(y,z) +

U(x)−U(y)
dL1(x ,y)

dL1(x ,y)
dL1(y,z) + 1

!

= ρ(x , y)

and so ρ(x , z)≤max{ρ(x , y),ρ(y, z)} when ρ(y, z)≤ ρ(x , y). The argument for the case
where ρ(y, z)≥ ρ(x , y) is analogous.

Now we show sufficency. Let ⪰ be the stochastic preference relation induced by ρ. ⪰
satisfies coordinate independence and inherits continuity from ρ, and since we have at
least 3 non-null attributes, we invoke Debreu (1983) to conclude that ⪰ has an additively
separable representation: there exists ui : X i → R, continuous, such that

x ⪰ y ⇐⇒
∑

k

uk(xk)≥
∑

k

uk(yk)

Since all attributes are non-null and the Xk are connected, each uk(Xk) is a non-trivial
interval of R. Since the representation is unique up to cardinal transformations, we can
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without loss assume that for each k ∈ I , uk(Xk) contains 0, and furthermore, since uk(Xk)
is a non-trivial interval, that uk(Xk) contains a non-trivial open interval around 0. For all
k ∈ I , let uk = sup uk(Xk) and uk = inf uk(Xk), taken with respect to the extended real line,
and let ∆k = uk − uk. For all x ∈ X , define x̃ = (u1(x1), ...,uk(xk)) ∈ Rn. Begin by noting
the following result.

Lemma 8. For x , y ∈ X with x̃ = ỹ: ρ(x , z) = ρ(y, z) for all z ∈ X .

Proof. Fix such an x , y , and take any z ∈ X . Note that x ∼ y by hypothesis. First consider
the case where x ∼ y ⪰ z. Since (x , y) and (y, z) are congruent, and likewise (y, x) and
(x , z) are congruent, Tradeoff Congruence implies

ρ(x , z)≤max{ρ(y, z),ρ(x , y)}= ρ(y, z)

ρ(y, z)≤max{ρ(x , z),ρ(y, x)}= ρ(x , z)

and so ρ(y, z) = ρ(x , z). Analogously, consider the case where z ⪰ x ∼ y . Since (z, x) and
(x , y) are congruent and likewise (z, y) and (y, x) are congruent, we have

ρ(z, x)≤max{ρ(z, y),ρ(y, x)}= ρ(z, y)

ρ(z, y)≤max{ρ(z, x),ρ(x , y)}= ρ(z, x)

and so ρ(z, x) = ρ(z, y) =⇒ ρ(x , z) = ρ(y, z).

Let X̃ = { x̃ ∈ Rn : x ∈ X }. Let D̃ = {(a, b) ∈ X̃ : a ̸= b} and define φ : D̃→ D satisfying
φ(a, b) ∈ {(x , y) ∈ D : x̃ = a, ỹ = b}, and define ρ̃ : D̃ → [0,1] by ρ̃(a, b) = ρ(φ(a, b)).
Lemma 8 implies that ρ̃ is a binary choice rule on D̃ and does not depend on the selection
made by φ: in particular, we have ρ̃( x̃ , ỹ) = ρ(x , y) for all (x , y) ∈ D. This in turn implies
that ρ̃ inherits our axiomsM1,M3–M5, M7–M8. Note that if there exists a strictly increasing,
continuous function G such that

ρ̃(a, b) = G

�
∑

k(ak − bk)
∑

k |ak − bk|

�

for all (a, b) ∈ D̃, we are done, as this implies that for any (x , y) ∈ D such that x̃ ̸= ỹ ⇐⇒
∑

k |uk(xk)− uk(yk)|> 0,

ρ(x , y) = ρ̃( x̃ , ỹ) = G

�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�
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and furthermore for (x , y) ∈ D such that x̃ = ỹ , we have x ∼ y =⇒ ρ(x , y) = 1/2, and
so ρ has an additively separable L1-complexity representation.

In what follows, we will work with ρ̃ defined on X̃ and suppress the ∼ in our notation.
Say that ρ defined on this domain is

• Translation invariant if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ = y + z,
ρ(x ′, y ′) = ρ(x , y).

• Scale invariant if for all x , x ′, y, y ′ ∈ X such that x ′ = cx , y ′ = c y for c > 0,ρ(x ′, y ′) =
ρ(x , y).

• Translation invariant* if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ = y + z,
and additionally xk = yk for some k ∈ I , ρ(x ′, y ′) = ρ(x , y).

• Scale invariant* if for all x , x ′, y, y ′ ∈ X such that x ′ = cx , y ′ = c y for c > 0, and
additionally xk = yk for some k ∈ I , ρ(x ′, y ′) = ρ(x , y).

• Translation invariant† if for all x , x ′, y, y ′ ∈ X , z ∈ Rn such that x ′ = x + z, y ′ =
y + z, and additionally xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I ,
ρ(x ′, y ′) = ρ(x , y).

• Scale invariant† if for all x , x ′, y, y ′ ∈ X such that x ′ = λx , y ′ = λy for λ ∈ (0,1), and
additionally xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I , ρ(x ′, y ′) =
ρ(x , y).

First, note that Separability and Simplification imply translation invariance†.

Lemma 9. Suppose ρ satisfies Separability and Simplification. Then ρ satisfies translation
invariance†.

Proof. Begin by noting that for x ′, y ′, x , y ∈ X , z ∈ Rn with x ′ = x + z, y ′ = y + z, and
xk = yk for some k ∈ I such that |x i − yi| < ∆k for all i ∈ I : for any E ⊆ I , x +

∑

j∈E z{ j}
and y +

∑

j∈E z{ j} will be in our domain, with
�

x +
∑

j∈E z{ j}
�

k
=
�

y +
∑

j∈E z{ j}
�

k
and with

�

�

�

�

x +
∑

j∈E z{ j}
�

i
−
�

y +
∑

j∈E z{ j}
�

i

�

�

� <∆k for all i. Since we can translate x and y by each
component z{ j} attribute-by-attribute, it suffices to show that for any x , y ∈ X with xk = yk

where |x i − yi| <∆k for all i ∈ I , z ∈ Rn, j ∈ I such that x + z{ j} and y + z{ j} belong to our
domain, ρ(x + z{ j}, y + z{ j}) = ρ(x , y). Fix such an x , y ∈ X , z ∈ Rn, k, j ∈ I .
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Note that if j = k, Separability gives us the desired result. Now suppose j ̸= k. Suppose
that x j ≥ y j (the argument for x j < y j is analogous). For any i ∈ I , a ∈ (ui, ui), w ∈ X ,
let a{i}w ∈ X denote the option equal to a for attribute k = i and equal to wk for all other
attributes. Since by hypothesis |x i − yi| < ∆k for all i, there exists some b ∈ (uk, uk) such
that |x i − yi| < uk − b for all i. By Separability, we have ρ(b{k}x , b{k} y) = ρ(x , y). Now
consider x ′ ∈ Rn satisfying

x ′i =















y j i = j

b+ (x j − y j) i = k

x i otherwise

By construction, b + (x j − y j) < uk, and so x ′ ∈ X . Applying Simplification twice, we have
ρ(x ′, b{k} y) = ρ(b{k}x , b{k} y). Since x ′j = (b{k} y) j by construction, Separability in turn
implies that ρ(x ′+z{ j}, b{k} y+z{ j}) = ρ(x ′, b{k} y). Again applying Simplification twice, we
have ρ(b{k}x+z{ j}, b{k} y+z{ j}) = ρ(x ′+z{ j}, b{k} y+z{ j}). A final application of Separability
yields ρ(x + z{ j}, y + z{ j}) = ρ(b{k}x + z{ j}, b{k} y + z{ j}), and the chain of equalities yields
ρ(x + z{ j}, y + z{ j}) = ρ(x , y) as desired.

The next result says that scale invariance* is implied by translation invariance† and our
other axioms.

Lemma 10. Suppose ρ satisfies translation invariance†, Continuity, Moderate Transitivity,
and Tradeoff Congruence. Then ρ satisfies scale invariance*.

Proof. First, show that invariance† holds for half-mixtures and then extend the result to
arbitrary mixtures using continuity. In particular, we want to show that for x , y ∈ X with
xk = yk for some k such that |x i − yi| < ∆k for all i, ρ(x , y) = ρ(1

2 x , 1
2 y). Without loss,

suppose that x ⪰ y . By translation invariance†, we have ρ(x , 1
2 x + 1

2 y) = ρ(1
2 x + 1

2 y, y) =
ρ(1

2 x , 1
2 y). Since (x , 1

2 x + 1
2 y) and (1

2 x + 1
2 y, y) are congruent and x ⪰ 1

2 x + 1
2 y ⪰ y ,

by Tradeoff Congruence and Moderate Transitivity, we have ρ(x , y) = ρ(x , 1
2 x + 1

2 y) =
ρ(1

2 x , 1
2 y) as desired.

We now show that for any x , y ∈ X with xk = yk and |x i − yi|<∆k for all i ∈ I , for any
n ∈ N, ρ(x , y) = ρ(αx ,αy) for all α ∈ { 1

2n , 2
2n , ..., 2n

2n }. Note that if x ∼ y , then the result
holds by definition of ⪰ and we are done. Now suppose that x ̸∼ y , and assume without
loss that x ≻ y . Proceed inductively; given what we have shown above, the statement
is true for n = 1. Now suppose the statement is true for some n; we wish to show that
for any m ∈ {1, ..., 2n+1}, ρ( m

2n+1 x , m
2n+1 y) = ρ(x , y). Note that for any m ≤ 2n we have
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ρ( m
2n+1 x , m

2n+1 y) = ρ( m
2n x , m

2n y) = ρ(x , y) using our result on half-mixtures and by inductive
hypothesis.

Now consider m ∈ {2n + 1, ..., 2n+1}. Note that by translation invariance† and by induc-
tive hypothesis, we have ρ( m

2n+1 x , 1
2 y + m−2n

2n+1 x) = ρ(1
2 x , 1

2 y) = ρ(x , y). Also, by translation
invariance† and inductive hypothesis, we have ρ(1

2 y + m−2n

2n+1 x , m
2n+1 y) = ρ(m−2n

2n+1 x , m−2n

2n+1 y) =
ρ(x , y). These two equalities andModerate Transitivity imply thatρ( m

2n+1 x , m
2n+1 y)≥ ρ(x , y).

Toward a contradiction, suppose ρ( m
2n+1 x , m

2n+1 y)> ρ(x , y). Translation invariance† then
implies ρ(x , 2n+1−m

2n+1 x + m
2n+1 y) > ρ(x , y). By translation invariance† and the result shown

above, we also have ρ(2n+1−m
2n+1 x + m

2n+1 y, y) = ρ(2n+1−m
2n+1 x , 2n+1−m

2n+1 y) = ρ(x , y). But since Mod-
erate Transitivity implies that ρ(x , y)> ρ(2n+1−m

2n+1 x+ m
2n+1 y, y), we have a contradiction. This

proves the statement for n+1, and so by induction the statement holds for any n. By taking
limits and by Continuity of ρ, we can then conclude that scale invariance† holds.

Now we show that scale invariance* holds. Fix any x , y ∈ X where xk = yk for some
k. Without loss, assume x ⪰ y . First, show that ρ(x , y) = ρ(λx ,λy) for any λ ∈ (0, 1).
Note that there exists some N ∈ N such that 1

N |x i − yi| < ∆k for all i. For n ∈ {0, 1, ..., N},
define wn ∈ X by wn = n

N x + N−n
N y . Now consider the sequence of comparisons (wN , wN−1),

(wN−1, wN−2), ..., (w1, w0). Since wn−wn−1 = 1
N (x − y) for all n, we have wn ⪰ wn−1 for all n,

and additionally |wn
i − wn−1

i | < ∆k for all i, and so translation invariance† implies that for
all n, ρ(wn, wn−1) = ρ(wn−(N−n

N y+ n−1
N x), wn−1−(N−n

N y+ n−1
N x)) = ρ( 1

N x , 1
N y). Sequential

applications of Moderate Transitivity and Tradeoff Congruence yield, respectively

ρ(x , y)≥min{ρ(wN , wN−1),ρ(wN−1, wN−2), ...,ρ(w1, w0)}

ρ(x , y)≤max{ρ(wN , wN−1),ρ(wN−1, wN−2), ...,ρ(w1, w0)}

and so we have ρ(x , y) = ρ( 1
N x , 1

N y). An analogous argument, taking the sequence of com-
parisons (λwN ,λwN−1), (λwN−1,λwN−2), ..., (λw1,λw0), yields ρ(λx ,λy) = ρ(λ 1

N x ,λ 1
N y).

By scale invariance†, noting again that 1
N |x i − yi| < ∆k for all i, we have ρ(λ 1

N x ,λ 1
N y) =

ρ( 1
N x , 1

N y) and so ρ(x , y) = ρ(λx ,λy) as desired.
We have therefore shown that for any x , y ∈ X with xk = yk for some k, λ ∈ (0,1),

ρ(x , y) = ρ(λx ,λy). Finally, fix some c > 0 and x , y ∈ X with xk = yk for some k and
cx , c y ∈ X ; we wish to show that ρ(x , y) = ρ(cx , c y). If c ≤ 1, we are done by the result
established above. If instead c > 1, the above result implies that ρ(cx , c y) = ρ(1

c cx , 1
c c y) =

ρ(x , y).

Scale invariance* allows us to strengthen translation invariance† to translation invari-
ance*.
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Lemma 11. Suppose ρ satisfies translation invariance† and scale invariance*. Then ρ satisfies
translation invariance*.

Proof. Take x , y ∈ X with xk = yk for some k, and z ∈ Rn such that x + z, y + z ∈ X . There
exists some λ ∈ (0,1) such that λ|x i − yi|<∆k for all i; fix such a λ. We then have

ρ(x , y) = ρ(λx ,λy)

= ρ(λ(x + z),λ(y + z))

= ρ(x + z, y + z)

where the first and third equalities use scale invariance* and the second equality uses trans-
lation invariance†.

We now show that scale invariance*, translation invariance*, and Tradeoff Congruence
imply translation invariance.

Lemma 12. Suppose ρ satisfies translation invariance*, scale invariance*, Simplification,
Tradeoff Congruence, and Moderate Transitivity. Then ρ satisfies translation invariance.

Proof. Take any x , y ∈ X , w ∈ Rn such that x + w, y + w ∈ X . We want to show that
ρ(x + w, y + w) = ρ(x , y). Without loss, assume that x ⪰ y . Note that if x ≥ y , we are
done by Dominance, so consider the case where x ̸≥ y . Let z = x− y ∈ Rn. If zk = 0 for some
k, then by translation invariance* we are done, so consider the case where zk ̸= 0 for all k. It
must then be the case that there exist distinct indices i, j ∈ I such that sgn(zi) = sgn(z j) ̸= 0.
Define z i, z j ∈ Rn such that

z i
k =















zi + z j k = i

0 k = j

zk otherwise

z j
k =















0 k = i

zi + z j k = j

zk otherwise

Letting λ = z i

z i+z j
∈ (0,1), note that by construction z = λz i + (1−λ)z j. Now fix any v ∈ X

such that z+ v, v ∈ X ; note that z+ v ∈ X =⇒ (1−λ)z j+ v ∈ X . Since each uk(Xk) contains
a non-trivial open interval around 0, there exists γ ∈ (0,1) such that γz i,γz j ∈ X . We then
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have

ρ(z + v, (1−λ)z j + v) = ρ(γ(z + v),γ((1−λ)z j + v))

= ρ(γλz i, 0)

= ρ(γz i, 0)

= ρ(γz j, 0)

= ρ(γ(1−λ)z j, 0)

= ρ(γ((1−λ)z j + v),γv)

= ρ((1−λ)z j + v, v)

Where the first three equalities follow from scale invariance* and translation invariance*,
noting that by construction, (1−λ)z j

j = z j, the fourth equality follows from two applications
of Simplification, and the final three equalities follow from translation invariance* and scale
invariance*, noting that z j

i = 0.
By construction, (z+ v, (1−λ)z j+ v) and ((1−λ)z j+ v, v) are congruent, since [z+ v]−

[(1−λ)z j+ v] = λz i and [(1−λ)z j+ v]− v = (1−λ)z j, and since for all k, either z j
k, z i

k ≥ 0

or z j
k, z i

k ≤ 0. Furthermore, since
∑

k z i
k =

∑

k z j
k =

∑

k zk ≥ 0, we have z + v ⪰ (1−λ)z j + v

and (1−λ)z j + v ⪰ v. We then have

ρ(z + v, v) = ρ(z + v, (1−λ)z j + v)

= ρ(γz i, 0)

Where the first equality follows from Tradeoff Congruence and Moderate Transitivity, and
the second equality follows from the chain of equalities above. Since this equality holds for
all v such that z+v, v ∈ X , substituting v = y and v = y+w yields ρ(x , y) = ρ(x+w, y+w)
as desired.

Lemma 13. Suppose ρ satisfies translation invariance, Continuity, Moderate Transitivity, and
Tradeoff Congruence. Then ρ satisfies scale invariance.

Proof. Fix any x , y ∈ X , andwithout loss suppose x ⪰ y . Note that by translation invariance,
we have ρ(x , 1

2 x + 1
2 y) = ρ(1

2 x + 1
2 y, y) = ρ(1

2 x , 1
2 y). Since (x , 1

2 x + 1
2 y) and (1

2 x + 1
2 y, y)

are congruent and x ⪰ 1
2 x + 1

2 y ⪰ y , by Tradeoff Congruence and Moderate Transitivity,
we have ρ(x , y) = ρ(x , 1

2 x + 1
2 y) = ρ(1

2 x , 1
2 y).

The proof for extending the result on half-mixtures to arbitrary mixtures and then to
arbitrary rescaling follows an analogous argument as in the proof for Lemma 10, invoking
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translation invariance whenever translation invariance† is invoked in that proof.

Using Lemmas 9–13, we conclude that ρ satisfies scale and translation invariance. Lin-
early extend ρ to Rn as follows. Define D = {(x , y) ∈ Rn × Rn : x ̸= y}, and define
ρ : D→ [0,1] such that for any (x , y) ∈ D, ρ(x , y) = ρ(x , y), and for any (x , y) ∈ D \D,
ρ(x , y) = ρ(λx ,λy) for some λ ∈ (0, 1) such that λx ,λy ∈ X . Since X contains an open
a ball around the origin, this extension is well-defined. Furthermore, since ρ satisfies scale
and translation invariance, so does ρ, and so ρ satisfies M2 (Linearity). Noting that for any
finite collection of options A⊆ Rn, there exists λ ∈ (0, 1) such that λx ∈ X for all x ∈ A, by
scale invariance of ρ it is straightforward to show that ρ is a binary choice rule and satis-
fies M1, M3–M5. Theorem 1 then implies that there exists G continuous, strictly increasing,
such that for all (x , y) ∈ D,

ρ(x , y) = G

�
∑

k(xk − yk)
∑

k |xk − yk|

�

which in turn implies that for all (x , y) ∈ D,

ρ(x , y) = ρ(x , y) = G

�
∑

k(xk − yk)
∑

k |xk − yk|

�

which yields the desired representation.

Finally, we show uniqueness. Suppose that ρ has additively separable L1 complexity
representations ((ui)ni=1, G) and ((u′i)

n
i=1, G′). Let⪰ denote the stochastic order on X induced

byρ. Since G and G′ are strictly increasing and symmetric around 0, we have for all x , y ∈ X

x ⪰ y ⇐⇒
∑

k

uk(xk)≥
∑

k

uk(yk) ⇐⇒
∑

k

u′k(xk)≥
∑

k

u′k(yk)

and U , U ′ both represent ⪰, where U(x) =
∑

k uk(xk) and U ′(x) =
∑

k u′k(xk). Debreu
(1983) then implies that there exists C > 0, bk ∈ R such that u′k = Cuk + bk for all k. This
implies that for all x , y ∈ X ,

G

�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�

= G′
�
∑

k(uk(xk)− uk(yk))
∑

k |uk(xk)− uk(yk)|

�

By assumption, there exist two non-null indices; without loss, we assume indices 1 and
2 are non-null. Since u1, u2 are continuous and X1 and X2 are connected, u1(X1) and u2(X2)
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are intervals in Rn. Since we have shown that the uk are unique up to affine transformations,
we can without loss assume that for all µ ∈ [0,1], there exist xµ1 ∈ X1 and xµ2 ∈ X2 such
that u1(x

µ
1 ) = u2(x

µ
2 ) = µ.

Fix some x ∈ X . For any α,γ ∈ [0, 1], note that for x , y ∈ X with

xk =















xα1 k = 1

x0
2 k = 2

x k otherwise

yk =















x0
1 k = 1

xγ2 k = 2

x k otherwise

we have

ρ(x , y) = G
�

α− γ
α+ γ

�

= G′
�

α− γ
α+ γ

�

Since for any r ∈ [−1, 1] there exists α,γ ∈ [0,1] such that α−γα+γ = r, we must have G′ = G.

Proof of Theorem 4.

Necessity of the axioms is immediate from the definition; we now show sufficiency.
Let ⪰ denote the stochastic order on X induced by ρ. By Moderate Transitivity, ⪰ is

transitive. Since ρ satisfies Continuity and Independence, ⪰ satisfies the vNM axioms and
so there exists a utility function u : R→ R such that U(x) =

∑

w u(w) fx(w) represents ⪰;
Dominance implies that u is strictly increasing.

Fix any four distinct prizes wa, wb, wc, wd ∈ R such that u(wa)> u(wb)> u(wc)> u(wd).
Consider any two lotteries x , y ∈ X . Enumerate Sx∪Sy∪{wa, wb, wc, wd} by w1, w2, ..., wn+1,
where w1 < w2 < ... < wn+1, and let K = {1, ..., n, n + 1}. Let X (K) denote the set
of finite-state lotteries with support on {w1, w2, ..., wn+1}. With some abuse of notation,
we let a, b, c, d denote the indices in K corresponding to prizes wa, wb, wc, wd . We have
u(w1) < u(w2) < ... < u(wn+1). With some abuse of notation, for any z ∈ X (K), let Fz(k) =
∑

w≤wk
fz(w) denote the value of the CDF of z at support point wk, and let u(k) = u(wk).

Identify each lottery z ∈ X (K) with its utility-weighted CDF vector z̃ ∈ Rn, where

z̃k = −Fz(k)(u(k+ 1)− u(k))
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for k = 1, 2, ..., n. Note that for any x , y ∈ X (K),
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|
=

U(x)− U(y)
dC DF(x , y)

We now seek to extend the space of utility-weighted CDF vectors to Rn in order to apply
Theorem 1. Let µ ∈ X (K) denote the lottery that is uniform over K; that is Fµ(k) =

k
n+1 .

Consider the set

V = {a ∈ Rn : ak = α( x̃k − µ̃k) : x ∈ X (K),α > 0)}.

Lemma 14. V = Rn.

Proof. By definition we have V ⊆ Rn. To see that Rn ⊆ V , take any a ∈ Rn. We will show
that a ∈ V . Define

β = max
k∈{2,3,...,n}

(n+ 1) [ak/(u(k+ 1)− u(k))− ak−1/(u(k)− u(k− 1))]

γ= (n+ 1)[a1/(u(2)− u(1))]

η= −(n+ 1)[an/(u(n+ 1)− u(n))]

and fix any α >max{β ,γ,η, 0}. Define H : K → R given by

H(k) =







Fµ(k)−
ak/(u(k+ 1)− u(k))

α
k < n+ 1

1 k = n+ 1

Since α > β , we have H(k + 1)− H(k) ≥ 0 for all k = 1, ..., n, and since α > η, we have
1 = H(n+ 1)− H(n) ≥ 0, and so H is increasing. Furthermore, since α > γ, H(1) ≥ 0, and
so H is positive on its domain. Since H(n+1) = 1, H is the CDF of a lottery in X (K), which
we denote by x . Note that by construction, for all k = 1, ..., n we have

α( x̃k − µ̃k) = α
�

−Fµ(k)(u(k+ 1)− u(k)) +
ak

α
+ Fµ(k)(u(k+ 1)− u(k))

�

= ak

which implies that a ∈ V .
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For any a, b ∈ V , let

L(a, b) = {(x , y) ∈ X (K)× X (K) : a = α( x̃ − µ̃), b = α( ỹ − µ̃), α > 0}.

Lemma 15. Let W ⊆ V finite. Then there exists α > 0 such that for all a ∈W , a = α( x̃ − µ̃)
for some x ∈ X (K).

Proof. Enumerate the elements of W by {a1, a2, ..., al}. For all m = {1,2, ..., l}, there exists
αm > 0, zm ∈ X (K) such that am = αm(z̃m − µ̃). Let α = maxmα

m, and for all m, define
xm ∈ X (K) satisfying (αm/α)zm + (1−αm/α)µ, and notice that am = α( x̃m − µ̃).

Define some φ : V × V → X (K)× X (K) that takes an arbitrary selection from L(a, b);
Lemma 15 implies L(a, b) is non-empty, φ is well-defined. For D̂ = {(a, b) ∈ V ×V : a ̸= b},
define ρ̂ : D̂→ [0,1] by ρ̂(a, b) = ρ(φ(a, b)).

Lemma 16. ρ̂ is uniquely identified by ρ. That is, for any a, b ∈ V : for any (x , y), (x ′, y ′) ∈
L(a, b),. ρ(x , y) = ρ(x ′, y ′) and so ρ̂ does not depend on the choice of φ. Also, ρ̂ is a binary
choice rule, that is, ρ̂(a, b) = 1− ρ̂(b, a).

Proof. Fix some a, b ∈ V , and suppose (x , y), (x ′, y ′) ∈ L(a, b). It suffices to show that
ρ(x , y) = ρ(x ′, y ′). Since (x , y), (x ′, y ′) ∈ L(a, b), there exists α,α′ > 0 such that

a = α( x̃ − µ̃) = α′( x̃ ′ − µ̃)

b = α( ỹ − µ̃) = α′( ỹ ′ − µ̃)

Without loss, we can take α′ > α. For λ= α
α′ , the above inequalities directly imply that

x ′ = λx + (1−λ)µ

y ′ = λy + (1−λ)µ

and so by Independence of ρ, ρ(x , y) = ρ(x ′, y ′).

Finally to see that ρ̂ is a binary choice rule, take any a, b ∈ V . By Lemma 15, there
exists α > 0, x , y ∈ X (K) such that a = α( x̃ − µ̃), b = α( ỹ − µ̃); we have

ρ̂(a, b) = ρ(x , y)

= 1−ρ(y, x)

= 1− ρ̂(b, a)
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as desired.

Lemma 17. ρ̂(a, b)≥ 1/2 ⇐⇒
∑

k ak ≥
∑

k bk., and ρ̂ satisfies M1–M5.

Proof. Fix any a, b, c, a′, b′ ∈ V . By Lemma 15, there exists α > 0, x , y, z, x ′, y ′ ∈ X (K) such
that a = α( x̃ − µ̃), b = α( ỹ − µ̃), c = α(z̃ − µ̃), a′ = α( x̃ ′ − µ̃), b′ = α( ỹ ′ − µ̃).

To show the first claim, note that ρ̂(a, b) ≥ 1/2 ⇐⇒ ρ(x , y) ≥ 1/2 ⇐⇒ U(x) ≥
U(y) ⇐⇒

∑

k x̃k ≥
∑

k ỹk ⇐⇒
∑

k ak ≥
∑

k bk.

To see that ρ̂ satisfies Continuity, note that ρ̂ inherits continuity from ρ. To see that ρ̂
satisfies Linearity, take any λ ∈ [0,1].Note that by construction, λa + (1 − λ)c = α(λ x̃ +
(1−λ)z̃ − µ̃) and λb+ (1−λ)c = α(λ ỹ + (1−λ)z̃ − µ̃), and so

ρ̂(λa+ (1−λ)c,λb+ (1−λ)c) = ρ(λx + (1−λ)z,λy + (1−λ)z)

= ρ(x , y)

= ρ̂(a, b)

where the first and final equalities follow from Lemma 16, and the second equality follows
from Independence of ρ.

To show that ρ̂ satisfies Moderate Transitivity, suppose that ρ̂(a, b) ≥ 1/2, ρ̂(b, c) ≥
1/2. This implies that ρ(x , y) ≥ 1/2, ρ(y, z) ≥ 1/2, and so Moderate Transitivity of ρ im-
plies thatρ(x , z)≥min{ρ(x , y),ρ(y, z)}, which in turn implies that ρ̂(a, c)≥min{ρ(a, b),ρ(b, c)},
and so ρ̂ satisfies Moderate Transitivity.

To show that ρ̂ satisfies Dominance, by Lemma 16, it suffices to show that if ak ≥ bk for
all k, then x ≥ y . To see this, suppose that ak ≥ bk for all k; this implies that x̃k ≥ ỹk for
all k, which in turn implies that Fx(k)≤ Fy(k) for all k, and so x ≥ y .

Finally, to see that ρ̂ satisfies Simplification, consider a, b ∈ V with ρ(a, b) ≥ 1/2 and
a′ satisfying a′i = bi, a′k ̸= bk for all k ̸= i, j for i ̸= j, with ρ(a′, a)≥ 1/2.

By Lemma 15, there exists α > 0, x , x ′, y ∈ X (K) such that a = α( x̃− µ̃), a′ = α( x̃ ′− µ̃),
b = α( ỹ−µ̃), and Lemma 16 implies that ρ(x , y)≥ 1/2 and ρ(x ′, x)≥ 1/2. Define x̂ , x̂ ′, ŷ

by x̂ = 1/2x + 1/2µ, x̂ ′ = 1/2x ′ + 1/2µ, and ŷ = 1/2y + 1/2µ. By construction that
S x̂ = S x̂ ′ = S ŷ = {w1, ..., wn+1}, and so in particular S x̂ ′ ⊆ S x̂ ∪ S ŷ . Independence implies
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that ρ( x̂ , ŷ) ≥ 1/2, ρ( x̂ ′, x̂) ≥ 1/2. Moreover, since a′i = bi, we have F x̂ ′(wi) = F ŷ(wi),
and since a′k = ak for all k ̸= j, i, we have F x̂ ′(w) = F x̂(w) for all w ∈ S x̂ ∪ S ŷ/{wi, w j}.
Since ρ satisfies Simplification, we have ρ( x̂ ′, ŷ) ≥ ρ( x̂ , ŷ). Independence then implies
ρ(x ′, y) ≥ ρ(x , y), and so applying Lemma 16, we have ρ̂(a′, b) ≥ ρ̂(a, b), and so ρ̂
satisfies Simplification.

Using Lemma 17, Theorem 1 then implies that there exists a continuous, strictly increas-
ing G : [−1, 1]→ [0, 1], symmetric around 0, such that for all a, b ∈ Rn we have

ρ̂(a, b) = G

�
∑

k(ak − bk)
∑

k |ak − bk|

�

Lemma 16 then implies that for any x , y ∈ X (K), we have

ρ(x , y) = ρ̂( x̃ − µ̃, ỹ − µ̃)

= G

�
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|

�

= G
�

U(x)− U(y)
dC DF(x , y)

�

Let K = {K ⊆ S : |K | <∞, {wa, wb, wc, wd} ⊆ K}. The above implies that for any K ∈ K,
there exists a continuous, strictly increasing GK : [−1,1] → [0,1] such that for all x , y ∈
X (K),

ρ(x , y) = GK

�

U(x)− U(y)
dC DF(x , y)

�

All that remains is to show that for any K , K ′ ∈ K, GK = GK ′ . To see this, fix any K , K ′ ∈ K,
and for α≥ 0, γ≥ 0, consider x , y ∈ X with

x =
¦

wb w.p. 1 y =















wc w.p.
α/(u(wb)− u(wc))

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

wa w.p.
γ/(u(wa)− u(wb)

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

Note that x , y belong to both K and K ′, and so

ρ(x , y) = GK

�

U(x)− U(y)
dC DF(x , y)

�

= GK ′

�

U(x)− U(y)
dC DF(x , y)

�

and since U(x)−U(y)
dC DF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1]we can choose α,γ≥ 0 such that U(x)−U(y)

dC DF (x ,y) = r,
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we must have GK = GK ′ .

Finally, to show uniqueness, suppose, (G,β) and (G′, u′) both represent ρ. Define the
stochastic preference relation ⪰ as before. Since G and G′ are both increasing and symmet-
ric around 0, U(x) =

∑

s fx(w)u(w) and U ′(x) =
∑

s fx(w)u′(w) both represent ⪰, which
satisfies the vNM axioms, we can invoke vNM to conclude that there exists C > 0, b ∈ R
such that u′ = Cu+ b. This in turn implies that for all x , y ∈ X , we have

G

 

∑

s( fx(w)u(w)− f y(w)u(w))
∫ 1

0
u(F−1

x (q))− u(F−1
y (q))| dq

!

= G′
 

∑

s( fx(w)u′(w)− f y(w)u′(w))
∫ 1

0
u′(F−1

x (q))− u′(F−1
y (q))| dq

!

= G′
 

∑

s( fx(w)u(w)− f y(w)u(w))
∫ 1

0
u(F−1

x (q))− u(F−1
y (q))| dq

!

Now consider x , y ∈ X with

x =
¦

wb w.p. 1 y =















wc w.p.
α/(u(wb)− u(wc))

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

wa w.p.
γ/(u(wa)− u(wb)

α/(u(wb)− u(wc)) + γ/(u(wa)− u(wb))

since U(x)−U(y)
dC DF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1] we can choose α,γ ≥ 0 such that U(x)−U(y)

dC DF (x ,y) = r,
we must have G′ = G.

□

Proof of Theorem 5.

For x , y ∈ X , a, b ∈ R, define ax + b y ∈ X to be the payoff stream with the payoff function
amx + bmy . Let φτ ∈ X be the payoff stream that pays off 1 at time τ and 0 otherwise. We
start by observing a Lemma.

Lemma 18. Suppose U : X → R is linear. Then there exists d : [0,∞) → R such that
U(x) =

∑

t d(t)mx(t).

Proof. Let d : [0,∞) → R satisfying d(t) = U(φ t). Take any x ∈ X . Note that x =
∑

t∈Tx
mx(t)φ t , and so inductive application of linearity implies U(x) =

∑

t d(t)mx(t) as
desired.

Necessity of the axioms is immediate from the definitions; we now show sufficiency. Let
⪰ denote the complete binary relation on X induced by ρ. By Moderate Transitivity, ⪰ is
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transitive. Since ρ satisfies Continuity and Independence, by Theorem 8 in Herstein and
Milnor (1953), ⪰ is represented by a linear U : X → R, and Lemma 18 in turn implies the
existence of a d : [0,∞) → R such that U(x) =

∑

t d(t)mx(t). Dominance implies that
d(t) is positive and strictly decreasing. Extend d to [0,∞)∪ {+∞} by taking d(∞) = 0.

Fix any ta, t b, t c, td ∈ [0,∞), ta < t b < t c < td; we have d(ta)< d(t b)< d(t c)< d(td).
Now consider any x , y ∈ X . Let T = {0, ta, t b, t c, td} ∪ Tx ∪ Ty , and enumerate T ∪ {∞}
in increasing order by {t1, t2, ..., tn, tn+1}; we have d(t1) < d(t2) < ... < d(tn+1). Let
X (T ) = {x ∈ X : Tx ⊆ T} denote the set of payoff flows with support in T . Note that
all w ∈ X (T ) corresponds to a unique w̃ ∈ Rn satisfying w̃k = Mx(tk)(d(tk)− d(tk+1)). De-
note by ρ̃ the induced preference on Rn satisfying ρ̃( x̃ , ỹ) = ρ(x , y).

Claim 1. ρ̃( x̃ , ỹ)≥ 1/2 iff
∑

k x̃k ≥
∑

k ỹk. ρ̃ satisfies M1-M5.

Proof. Note that since
∑

k w̃k =
∑

t d(t)mw(t) for all w ∈ X (T ), we have
∑

k x̃k ≥
∑

k ỹk ⇐⇒
∑

t d(t)mx(t)≥
∑

t d(t)my(t) ⇐⇒ ρ(x , y)≥ 1/2 ⇐⇒ ρ̃( x̃ , ỹ)≥ 1/2.
It is immediate that ρ̃ inherits Continuity, Linearity, and Moderate Stochastic Transitiv-

ity from ρ. Dominance follows from the fact that for all x , y ∈ X (T ), Mx(t)≥ My(t) for all
t if and only if x̃k ≥ ỹk for all k.

Finally, to see that ρ̃ satisfies Simplification, take any x̃ , ỹ ∈ Rn with ρ̃( x̃ , ỹ)≥ 1/2 and
i ̸= j, and consider x̃ ′ satisfying x̃ ′i = ỹi, x̃ ′k = x̃k for k ̸= i, j, and with ρ̃( x̃ ′, x̃) = 1/2. By
construction, we have ρ(x , y) ≥ 1/2, ρ(x ′, x) ≥ 1/2. Since mx(t), my(t) ̸= 0 for finitely
many t, there exists η ∈ R such that mx(t) + η ̸= 0 and my(t) + η ̸= 0 for all t. Let
z ∈ X (T ) denote the payoff flow with mz(t) = η for all t ∈ T , and mz(t) = 0 otherwise.
Define x̂ , x̂ ′, ŷ ∈ X by x̂ = x + z, x̂ ′ = x ′ + z, ŷ = y + z. By Linearity of ρ, we have
ρ( x̂ , ŷ) ≥ 1/2, ρ( x̂ ′, x̂) ≥ 1/2. Note that by construction, Tx̂ = Tx̂ ′ = T ŷ = {t1, ..., tn}, and
so the support of x̂ ′ is contained in Tx̂ ∪ T ŷ . Furthermore, x̃ ′i = ỹi implies M x̂ ′(t i) = M ŷ(t i),
and x̃ ′k = ỹk for all k ̸= i, j implies M x̂ ′(t) = M x̂(t) for all t ∈ Tx̂ ∪ T ŷ/{t i, t j}, and so
since ρ satisfies Simplification, we have ρ( x̂ ′, ŷ)≥ ρ( x̂ , ŷ). Linearity of ρ then implies that
ρ(x ′, y)≥ ρ(x , y), and so by definition of ρ̃ we have ρ̃( x̃ ′, ỹ)≥ ρ̃( x̃ , ỹ) as desired.

Using Claim 1, Theorem 1 then implies that there exists a continuous, strictly increasing
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G : [−1,1]→ [0, 1], symmetric around 0, such that for all x , y ∈ X (T ) x̃ , ỹ ∈ Rn, we have

ρ(x , y) = ρ̃( x̃ , ỹ)

= G

�
∑

k( x̃k − ỹk)
∑

k | x̃k − ỹk|

�

= G
�

U(x)− U(y)
dC PF(x , y)

�

Let T = {T ⊆ [0,∞) : |T | <∞, {0, ta, t b, t c, td} ⊆ T}. The above implies that for all
T ∈ T , there exists a continuous, strictly increasing GT : [−1, 1]→ [0, 1], symmetric around
0 such that for any x , y ∈ X (T ),

ρ(x , y) = GT

�

U(x)− U(y)
dC PF(x , y)

�

Since for any x , y ∈ X , there exists some T ∈ T such that x , y ∈ X (T ), all that remains to
show that All that remains is to show that GT = GT ′ for any T, T ′ ∈ T . To see this, fix any
T, T ′ ∈ T , and consider x , y ∈ X with

mx(t) =















α/(d(ta)− d(tb)) t = ta

γ/(d(tb)− d(tc)) t = tc

0 otherwise

my(t) =







α/(d(ta)− d(tb)) + γ/(d(tb)− d(tc)) t = tb

0 otherwise

for some α≥ 0, γ≥ 0. Note that x , y belong to both T and T ′, and so we have

ρ(x , y) = GT

�

U(x)− U(y)
dC PF(x , y)

�

= GT ′

�

U(x)− U(y)
dC PF(x , y)

�

and since U(x)−U(y)
dC PF (x ,y) =

α−γ
α+γ , for any r ∈ [−1, 1]we can choose α,γ≥ 0 such that U(x)−U(y)

dC PF (x ,y) = r,
we must have GT = GT ′ .

Finally, to show uniqueness, suppose (G, d) and (G′, d ′) both represent ρ. Define the
stochastic preference relation⪰ as before. Since G, G′ are both strictly increasing, symmetric
around 0, both U(x) =

∑

t d(t)mx(t) and U ′(x) =
∑

t d ′(t)mx(t) both represent ⪰. Since
d ≥ 0 and and d, d ′ are both strictly decreasing, we have d(0), d ′(0)> 0. Fix any t ∈ (0,∞),
and let λt = d(t)/d(0). By construction, U(φ t) = U(λtφ

0), and so φ t ∼ λtφ
0. Since U ′

also represents ⪰, we have U ′(φ t) = U ′(λtφ
0) =⇒ d ′(t) = λt d

′(0), and so d ′(t) = Cd(t)
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for all t ∈ [0,∞), where C = d ′(0)/d(0) > 0. This in turn implies that for all x , y ∈ X ,
{t0, t1, ..., tn} containing {0,∞}∪ Tx ∪ Ty ,

G
�

U(x)− U(y)
dC PF(x , y)

�

= G′
�

∑

k(d
′(tk)mx(tk)− d ′(tk)my(tk))

∑

k |Mx(tk)−My(tk)|(d ′(tk)− d ′(tk+1))

�

= G′
�

∑

k(d(tk)mx(tk)− d(tk)my(tk))
∑

k |Mx(tk)−My(tk)|(d(tk)− d(tk+1))

�

= G′
�

U(x)− U(y)
dC PF(x , y)

�

Consider x , y ∈ X with

mx(t) =















α/(d(ta)− d(tb)) t = ta

γ/(d(tb)− d(tc)) t = tc

0 otherwise

my(t) =







α/(d(ta)− d(tb)) + γ/(d(tb)− d(tc)) t = tb

0 otherwise

for some α ≥ 0, γ ≥ 0. Since U(x)−U(y)
dC PF (x ,y) =

α−γ
α+γ , for any r ∈ [−1,1] we can choose α,γ ≥ 0

such that U(x)−U(y)
dC PF (x ,y) = r, we must have G′ = G.

□

F.2 Other Results

Proof of Proposition 6

Suppose (G, P, (uE)E∈P) and (G̃, P̃, (ũE)E∈P̃) represent ρ. We will first show that P = P̃. Fix
E ∈ P. It suffices to show that E ∈ P̃.

First, show that there must exist Ẽ ∈ P̃ such that E ⊆ Ẽ. Toward a contradiction, suppose
not: there then exists indices i, j ∈ E such that i ∈ Ẽ and j ∈ Ẽ′ for Ẽ, Ẽ′ ∈ P̃, Ẽ ̸= Ẽ′.

Since ũẼ is non-trivial, there exists w−i ∈ X Ẽ\{i} such that for some x i, x ′i ∈ X i, ũẼ(x i, w−i) ̸=
ũẼ(x ′i , w−i). Since ũẼ is continuous, the mapping x i 7→ ũ(x i, w−i), which we denote by vi,
is continuous, and since X i is connected and separable, the codomain of this mapping is a
non-trivial interval. By a similar argument, there exists z− j ∈ X Ẽ′\{ j} such that the codomain
of the mapping x j 7→ ũẼ′(x j, w− j), which we denote by v j, is a non-trivial interval.

The above implies that there exists a, b, c ∈ X i, α,β ∈ X j, such that vi(a)> vi(b)> vi(c),
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v j(α)> v j(β), and vi(a)− vi(b)> v j(α)− v j(β). Fixing any h ∈ X(Ẽ∪Ẽ′)c , define x , y ∈ X by

xk =







































(w−i)k k ∈ Ẽ \ {i}

(z− j)k k ∈ Ẽ′ \ { j}

b k = i

β k = j

hk otherwise

x ′k =







































(w−i)k k ∈ Ẽ \ {i}

(z− j)k k ∈ Ẽ′ \ { j}

a k = i

β k = j

hk otherwise

yk =







































(w−i)k k ∈ Ẽ \ {i}

(z− j)k k ∈ Ẽ′ \ { j}

c k = i

α k = j

hk otherwise

By construction, we have x ′k = xk = yk for all k ̸= i, j, and ũẼ(x ′Ẽ) > ũẼ(x Ẽ) > ũẼ(yẼ)
and ũẼ′(x ′Ẽ′) = ũẼ′(x Ẽ′)< ũẼ′(yẼ′), where ũẼ′(yẼ′)− ũẼ′(x Ẽ′)< ũẼ(x Ẽ)− ũẼ(yẼ).

Since (G̃, P̃, (ũE)E∈P̃) represents ρ, we have

ρ(x , y) = G′
�

ũẼ(x Ẽ)− ũẼ(yẼ) + ũẼ′(yẼ′)− ũẼ′(x Ẽ′)
|ũẼ(x Ẽ)− ũẼ(yẼ)|+ |ũẼ′(yẼ′)− ũẼ′(x Ẽ′)|

�

> 1/2

and we also have ρ(x ′, y)> ρ(x , y). Since (G, P, (uE)E∈P) also represents ρ, we have

ρ(x , y) = G
�

uE(xE)− uE(yE)
|uE(xE)− uE(yE)|

�

and since ρ(x , y)> 1/2, it must be the case that uE(xE)−uE(yE)> 0 and so ρ(x , y) = G(1).
But this contradicts the fact thatρ(x ′, y)> ρ(x , y), since by definition G attains its maximal
value at 1.

Now, we show that there cannot exist Ẽ ∈ P̃ such that E is a strict subset of Ẽ. To see
this, suppose that E is a strict subset of Ẽ: there then exists i, j ∈ Ẽ such that i ∈ E and
j ∈ E′ ∈ P, for E ̸= E′. But by an argument analogous to the one above, this cannot be the
case, and so we have a contradiction. We have therefore shown that for all E ∈ P, there
exists Ẽ ∈ P̃ such that E = Ẽ, and so P = P̃.

By relabeling each E ∈ P as an attribute, the above implies that ρ has additively sepa-
rable L1 complexity representations (G, (uE)E∈P) and (G̃, (ũE)E∈P). By Theorem 3, G = G′,
and there exists C > 0, bE ∈ R such that for each E ∈ P, ũE = CuE + bE.

□
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Proof of Proposition 7

Note that since H is strictly increasing,

max
g∈Γ (x ,y)

τL1
x y(g) = max

g∈Γ (x ,y)
H

�

|EU(x)− EU(y)|
∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|

�

= H





|EU(x)− EU(y)|
min

g∈Γ (x ,y)

∑

wx ,w y
|g(wx , w y)(u(wx)− u(w y))|





Let x̃ and ỹ denote the utility-valued lotteries induced by x and y , defined by the
quantile functions F−1

x̃ (q) = u(F−1
x (q)) and F−1

ỹ (q) = u(F−1
y (q)) for all q ∈ [0,1]. Note that

min
g∈Γ (x ,y)

∑

wx ,w y

|g(wx , w y)(u(wx)− u(w y))|= min
g∈Γ ( x̃ , ỹ)

∑

wx ,w y

g(wx , w y)|(wx −w y)|

=

∫ ∞

−∞
|F x̃(w)− F ỹ(w)| dw

=

∫ 1

0

|F−1
x̃ (q)− F−1

ỹ (q)| dq

= dC DF(x , y)

Where the second equality follows fromVallender (1974), since min
g∈Γ ( x̃ , ỹ)

∑

wx ,w y
|g(wx , w y)(wx−

w y)| is the 1-Wassertein metric between the distributions F x̃ and F ỹ , the third equality fol-
lows from a change of variables, and the final equality follows from the definition of x̃ , ỹ .

□

Proof of Proposition 8

Note that since H is strictly increasing,

max
b∈B(x ,y)

τL1
x y(b) = max

b∈B(x ,y)
H

�

|DU(x)− DU(y)|
∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|

�

= H





|DU(x)− DU(y)|
min

b∈B(x ,y)

∑

tx ,t y
|b(t x , t y)(d(t x)− d(t y))|
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All that remains is to show that for d b
L1(x , y) ≡

∑

tx ,t y
|b(t x , t y)d(t x) − d(t y)|, we have

min
b∈B(x ,y)

d b
L1(x , y) = dC PF(x , y).

Without loss, normalize d(0) = 1, and fix any x , y . Let w =
∑

t mx(t) +
∑

t my(t) de-
note the total payoff delivered by both x and y . Let B(x , y) contain all b ∈ B(x , y) satis-
fying b(t x , t y) > 0 for all t x , t y . Note that this implies that for all b ∈ B(x , y), we have
∑

tx ,t y
b(t x , t y)≤ w. Since x and y have positive payouts, we have

max
b∈Bx ,y

d b
L1(x , y) = max

b∈Bx ,y

d b
L1(x , y)

We will now show that maxb∈Bx ,y
d b

L1(X , Y ) = dC PP(x , y). For all b ∈ B(X , Y ), consider a
joint density b̃ over [0,1]2 with mass function satisfying

b̃(wx , w y) =







b(d−1(wx), d−1(w y)/w wx ̸= 0 or w y ̸= 0

1−
∑

{(tx ,t y ):¬(tx=∞,t y=∞)}
b(t x , t y)/w wx = w y = 0

Note that b̃ is well-defined since b(t x , t y) > 0 for all t x , t y and
∑

tx ,t y
b(t x , t y)/w ≤ 1 by

construction.
Let b̃x and b̃y denote the marginal distributions of b̃. Note that for all t ∈ [0,∞), we

have

b̃x(d(t)) =
∑

w y

b̃(d(t), w y)

=
∑

t y

b̃(d(t), d(t y))/w

=
∑

t y

b(t, t y)/w

= mx(t)/w

where the third equality follows from the fact that
∑

t y
b(t, t y) = mx(t) for all t ∈ [0,∞),

and so

b̃x(w) = hx(w)≡







mx(d−1(w))/w w ∈ (0, 1]

1−
∑

t mx(t)/w w ∈ 0
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A similar argument implies that

b̃y(w) = hy(w)≡







my(d−1(w))/w w ∈ (0, 1]

1−
∑

t my(t)/w w ∈ 0

Let B̃(x , y) denote the set of joint densities g(wx , w y) over [0, 1]2 with marginals given
by gx = hx and g y = hy . The above implies that for all b ∈ B(x , y), b̃ ∈ B̃(x , y). We will
now show that for all g ∈ B̃(x , y), there exists b ∈ B(x , y) such that b̃ = g.

Fix any g ∈ B̃(x , y), and define b : R+ ∪ {+∞}×R+ ∪ {+∞}→ R by

b(d−1(wx), d−1(w y)) =







g(wx , w y) ·w wx ̸= 0 or w y ̸= 0

0 wx = w y = 0

for all wx , w y ∈ [0,1]2. By construction,
∑

tx ,t y
b(t x , t y)≤ w and b(t x , t y)> 0. Furthermore,

for all t ∈ [0,∞) we have

∑

t y

b(t, t y) =
∑

w y

b(t, d−1(w y))

=
∑

w y

g(d(t), w y) ·w

= hx(d(t)) ·w

= mx(t)

where the third equality follows from the fact that gx = hx and the last equality follows
from the definition of hx . We similarly have

∑

tx
b(t x , t) = my(t) for all t ∈ [0,∞), and so

b ∈ B(x , y). Note that by construction, b̃ = g as desired. Now since

d b
L1(x , y) =

∑

tx ,t y

b(t x , t y)|d(t x)− d(t y)|

= w
∑

wx ,w y

b̃(wx , w y)|wx −w y |

the fact that for any b ∈ B(x , y), b̃ ∈ B̃(x , y) and that for any g ∈ B̃(x , y), there exists
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b ∈ B(x , y) s.t. b̃ = g implies that

min
b∈B(x ,y)

d b
L1(x , y) = min

g∈B̃(x ,y)
w
∑

wx ,w y

g(wx , w y)|wx −w y |

= w

∫ 1

0

|Hx(w)−H y(w)| dw

where the second line follows from Vallender (1974), for Hx and H y the CDFs of hx , hy .
Enumerate the elements of Tx y by 0 = t0, t1, ..., tn =∞ and let wk = d(tk) for all k =
0, 1, ..., n. Note that for all k = 1, ..., n,

Hx(wk) =
n−1
∑

j=k

mx(d
−1(w j))/w+ 1−

n−1
∑

j=1

mx(t j)/w

= 1−
k−1
∑

j=1

mx(t j)/w

= 1−Mx(tk−1)/w

By a similar argument for H y , we have

Hx(wk) =







1−Mx(tk−1)/w k ≥ 1

1 k = 0
H y(wk) =







1−My(tk−1)/w k ≥ 1

1 k = 0

We therefore have

min
b∈B(x ,y)

d b
L1(x , y) = w

n
∑

k=1

|Hx(wk)−H y(wk)|(wk−1 −wk)

=
n
∑

k=1

|Mx(tk−1)−My(tk−1)|(d(tk−1)− d(tk))

= dC PF(x , y)

as desired.
□
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Proof of Proposition 9

Suppose a multinomial choice rule ρ is represented by (Q, v,τ) and (Q′, v′,τ′). With some
abuse of notation, let ρ also denote the binary choice rule induced by the restriction of ρ
to binary menus.

Let ⪰ denote the stochastic order induced by ρ. Since ρ is represented by (Q, v,τ), we
have ρ(x , y) = Φ(sgn(v(x)−v(y))τ(x , y)), and so x ⪰ y iff v(x)≥ v(y). Similarly, since ρ
is represented by (Q′, v′,τ′), x ⪰ y iff v′(x)≥ v′(y). This implies that for any x , y , we have
v(x) = v(y) ⇐⇒ x ∼ y ⇐⇒ v′(x) = v′(y), and so the transformation φ : v(X ) → R
satisfying φ(v(x)) = v′(x) for all x ∈ X is well defined. To see that φ is strictly increasing,
suppose not; there exists x , y ∈ X such that v(x) > v(y) but φ(v(x)) ≤ φ(v(y)); the
former implies that x ≻ y but the latter implies that y ⪰ x , a contradiction.

To see that τ = τ′, fix any (x , y) ∈ D. First consider the case where v(x) = v(y); by
definition of τ, τ(x , y) = 0. But since v(x) = v(y) =⇒ v′(x) = v′(y), we also have
τ′(x , y) = 0. Now consider the case where v(x) ̸= v(y); without loss, assume v(x)> v(y).
By the above result, we have sgn(v(x) − v(y)) = sgn(v′(x) − v′(y)) = 1, which in turn
implies that ρ(x , y) = Φ(τ(x , y)) = Φ(τ′(x , y)). Since Φ is strictly increasing, we have
τ(x , y) = τ′(x , y), and so τ= τ′ as desired.

□

Proof of Proposition 10

Consider the extension of a binary choice rule ρ to a multinomial choice rule ρ(x , A) sat-
isfying

∑

x∈Aρ(x , A) = 1 in every finite menu A. Note that ρ describes a mapping from
finite subsets of Rn to a probability measure on the Borel sigma-algebra in Rn. Endow the
set of finite subsets of Rn with the topology induced by the Hausdorff metric, and endow
the set of probability measures on the Borel sigma-algebra with the topology of weak con-
vergence. We now state the Gul and Pesendorfer (2006) postulates (henceforth, GP postu-
lates). Say that ρ is continuous when this mapping is continuous. Say that ρ is monotone
if ρ(x , A) ≥ ρ(x , B) whenever A ⊆ B, and that ρ is linear if for all x ∈, y ∈ Rn, α ∈ (0, 1),
ρ(x , A) = ρ(αx + (1− αy), {αz + (1− α)y : z ∈ A}). Say that ρ is extreme if ρ(x , A) > 0

implies that x is an extreme point of A.
Now consider a binary choice ruleρ with an L1-complexity representation (β , G), where

G(1) = G(−1) = 1. Note that on its domain, ρ satisfies the GP postulates of continuity,
linearity, and extremeness, as in any binary menu both options are extreme points. Since the
GP postulate of monotonicity makes no restrictions in binary choice behavior,ρ also satisfies
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this property on its domain. Therefore, there exists an extension of ρ to a multinomial
choice rule that is conitnuous, monotone, linear, and extreme. By Theorem 3 of Gul and
Pesendorfer (2006), there exists a random vector β̃ such that

ρ(x , A) = P

¨

∑

k

β̃k xk ≥
∑

k

β̃k yk∀ y ∈ A

«

which in turn implies that for all (x , y) ∈ D,

ρ(x , y) = P

¨

∑

k

β̃k xk ≥
∑

k

β̃k yk

«

To see that P
�

sgn(β̃k) = sgn(βk)
	

= 1 for all k, suppose not; let y = 0⃗ and x ∈ Rn such that
xk = sgn(βk) and x j = 0 for all j ̸= k. Since G(1) = 1 and βk xk ≥ βk yk for all k, we have
ρ(x , y) = 1. However, P

�

sgn(β̃k) = sgn(βk)
	

̸= 1 implies that ρ(x , y)< 1, a contradiction.
□

Proof of Proposition 11

Suppose that ρ has an linear differentiation representation (β ,Σ, G) and that at least 3
attributes are non-null; without loss, we assume that attributes k = 1,2, 3 are non-null.

Let ρ̃ denote the binary choice rule on R2 defined by the restriction of ρ to the first two
dimensions, i.e. ρ̃( x̃ , ỹ) = ρ(( x̃ , 0, ..., 0), ( ỹ , 0, ..., 0)) for all x̃ , ỹ ∈ R2, x̃ ̸= ỹ; it is immedi-
ate from the definition that ρ̃ has an linear differentiation representation with parameters
(β̃ , Σ̃, G), where β̃ = (β1,β2) and Σ̃ is the submatrix formed from the first 2 rows and
columns of Σ. Furthermore, since attributes 1 and 2 are non-null, β̃1, β̃2 ̸= 0.

Fix any ỹ ∈ Rn, and define B = { x̃ ∈ R2 : β̃ ′( x̃ − ỹ) = 1}. Note that arg max x̃ ′∈B ρ̃( x̃ ′, ỹ)
has a unique maximizer, which we denote by x̃: to see this, note that Proposition 1 of He and
Natenzon (2023b) implies that if x̃ ∈ arg max x̃ ′∈B ρ̃( x̃ ′, ỹ), then x̃ − ỹ = αΣ̃−1β̃ for some
α ̸= 0; since β̃ ′( x̃− ỹ) = 1, it must be the case that α= 1/β̃ ′Σ̃′β̃ and so x̃ = ỹ+ 1

β̃ ′Σ̃′β̃
Σ̃−1β̃ .

Take any w̃ ̸= x̃ such that w̃ ∈ B and sgn(w̃k) = sgn(β̃k) for k = 1, 2, and define x , w, y ∈
Rn where x = ( x̃ , 0, ..., 0), w= (w̃, 0, ..., 0), y = ( ỹ , 0, ..., 0). Since x̃ is the uniquemaximizer
of argmax x̃ ′∈B ρ̃( x̃ ′, ỹ), we have ρ̃(w̃, ỹ)< ρ̃( x̃ , ỹ), which in turn impliesρ(w, y)< ρ(x , y).
Furthermore, since by construction we have sgn(xk) = sgn(βk) for k = 1,2 and xk = 0 for
all k > 2, and since β1,β2 ̸= 0, we have w>D y .

Note that if x ̸>D y , we are done. If instead x >D y , define x ′(ε) ∈ Rn by x ′(ε) =
( x̃1, x̃2,−sgn(β3)ε, 0, ..., 0); by continuity of ρ, there exists some ε > 0 such that ρ(w, y)<
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ρ(x ′(ε), y). Furthermore, since β3 ̸= 0 as the third attribute is non-null, by construction we
have x ′(ε) ̸>D y and so we are done.

□

Proof of Proposition 12

Suppose ρ has an L1-complexity representation. Theorem 2 implies that ρ satisfies moder-
ate transitivity and dominance with respect to >D, and so Lemma 1 implies that ρ satisfies
monotonicity with respect to >D, which in turn implies weak monotonicity.

Now suppose that ρ has a linear differentiation representation (β ,Σ, G) and suppose
that at least two attributes are non-null; without loss, we take these attributes to be k = 1,2.

Let ρ̃ denote the binary choice rule on R2 defined by the restriction of ρ to the first two
dimensions, i.e. ρ̃( x̃ , ỹ) = ρ(( x̃ , 0, ..., 0), ( ỹ , 0, ..., 0)) for all x̃ , ỹ ∈ R2, x̃ ̸= ỹ; it is immedi-
ate from the definition that ρ̃ has an linear differentiation representation with parameters
(β̃ , Σ̃, G), where β̃ = (β1,β2) and Σ̃ is the submatrix formed from the first 2 rows and
columns of Σ. Furthermore, since attributes 1 and 2 are non-null, β̃1, β̃2 ̸= 0.

Fix any ỹ ∈ R2. Proposition 1 of He and Natenzon (2023b) implies that any x̃ ∈
arg max x̃ ′ ρ̃( x̃ ′, ỹ) satisfies x̃− ỹ = αΣ̃−1β̃ for some α ̸= 0; fix such a x̃ . Since

�

αΣ̃−1β̃
	

α∈R

traces a unique direction inR2, there exists b1, b2 > 0 such that for b ≡ (sgn(β1)·b1, sgn(β2)·
b2), we have b ̸= αΣ̃−1β̃ for any α ̸= 0, which in turn implies that for x̃ ′ ≡ x̃ + b,
x̃ ′ − ỹ ̸= αΣ̃−1β̃ for any α ̸= 0, and so ρ̃( x̃ ′, ỹ)< ρ̃( x̃ , ỹ).

Now define x , x ′, y ∈ Rn by x = ( x̃ , 0, ..., 0)), x ′ = ( x̃ ′, 0, ..., 0)), y = (y, 0, ..., 0)); by
construction and the above, we have ρ(x ′, y) < ρ(x , y). Also by construction, we have
x ′ >D x , and so ρ violates weak monotonicity.

G Performance Benchmarks

Following the procedure proposed in Fudenberg et al. (2022), we establish “completeness
benchmarks” in each of our three domains by training flexible, non-parametric models to
predict our outcomes of interest (i.e. choice rates). Then, we assess the completeness of our
similarity-based complexity model as well as other canonical choice models. In this section,
we describe the procedure used to train non-parametric benchmark models in each domain.

Overview.We use neural networks in each domain to fit highly flexible models of choice on
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binary choice data. The inputs to the network are problem fundamentals (attribute values in
multi-attribute choice; payoffs and delays in intertemporal choice; payoffs and probabilities
in lotteries) and a set of hand-coded transformations of problem fundamentals.

To get our final “best performing” model, we use linear regression to ensemble the neu-
ral network prediction with the predictions of several alternative models in a validation set.
Finally, we use this ensembled predictor as our benchmark in a left-out test set. Because
we want to use our full sample of problems in final analysis, we split each dataset into 10
equal-sized folds and train 10 separate fully out-of-sample predictors, one for each fold.

Neural Network Training. In each domain and for each training fold, we tune a neural
network with 1 to 3 layers of hidden nodes. The set of hyperparameters we tune over are
displayed in Table 1. We use a learning rate of 0.001 and an Adam optimizer. We initially
experimented with alternative learning rates (including learning rate schedulers) and opti-
mizers, but found that these options performed at least as well as alternatives on our data.

Hyperparameter Values Meaning
Number of layers 1, 2, 3 Number of linear layers included in the network
Nodes 8, 16, 32 Number of hidden nodes in each network layer
Random dropout 0.0, 0.2, 0.5 Fraction of nodes to randomly zero out
Batch size 8, 16, 32, 64 Number of observations network should handle at once
Number of epochs 100, 500, 1000 Number of training epochs

Table 1: Hyperparameter tuning grid for neural networks.

Given a training set (8 folds), a validation set (1 fold), and a test set (1 fold), we proceed
by training a model with every possible combination of hyperparameters on the training set.
1 We then selected the “best” set of hyperparameters by evaluating the models’ performance
on the validation set. In particular, we select the model which minimizes negative log like-
lihood. Finally, we get test set predictions from the network trained with this “best” set of
hyperparameters. We repeat this procedure 10 times to get a fully out-of-sample predic-
tions for each choice in our data. For intertemporal choice and multi-attribute choice, we
separately select hyperparameters on each training fold. In lottery choice, we expedite the
training process by selecting hyperparameters only once (while getting out-of-sample pre-
dictions for the first fold) and then use this same set of hyperparameters to train the other 9
networks. We made this choice due to computational limitations, as there are over 10,000
lottery choice problems (10-20 times as many observations as our other domains) which

1In some domains, our grid search is based on a subset of the hyperparameter values from Table 1. We
first did experimentation to cull clearly underperfoming hyperparameters from the search space.
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makes training over a large hyperparameter grid 10 times costly.

Ensemble Procedure. After getting neural network predictions, we perform an ensembling
step to produce our “completeness benchmark” predictive model. We always perform the
ensembling step in the validation set so that the final test-set predictions are entirely out
of sample. This means that we actually run 10 different ensembles for each domain: one
for each leave-out fold. The ensemble components for the domains are given in Table 2.
We winsorize the ensemble estimates at 0.001 and 0.999, which ensures we can calculate
negative log likelihood of the final predictor.

Domain Ensemble Components

Multiattribute Choice

Neural Network
Distortion-Free Logit
Relative Thinking
L1 Complexity (2-parameters)
L1 Complexity (3-parameters)

Intertemporal Choice

Neural Network
Exponential Discounting
Quasi-Hyperbolic Discounting
Hyperbolic Discounting
CPF Complexity

Lottery Choice

Neural Network
Expected Utility
Simplicity Theory
Cumulative Prospect Theory
Risk-neutral CDF Complexity
Expected Utility CDF Complexity

Table 2: Ensemble component predictors.

H Restrictiveness Sampling Procedure

In our three domains, the admissable set of synthetic data P can be represented as a con-
vex polytope P ≡ {x ∈ Rn : Ax ≤ b}, where each dimension corresponds to the rate of
choosing option a for a given choice problem, and where the linear program (A, b) encodes
the Weak Dominance and Monotonicity constraints in addition to the constraints that each
binary choice rate must lie in [0, 1]. We approximate uniform samples from P using the hit-
and-run (HAR) sampler (Smith, 1984), a Markov-chain Monte Carlo algorithm designed
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to approximate uniform samples from a convex polytope (more generally, a convex set).
Starting from an initial point x0 in the interior of P, HAR proceeds as follows:

1. Randomly sample a direction in d t ∈ Rn.

2. Uniformly sample along the intersection of the line L = {x t+θd t}θ∈R and P to obtain
the next iterate x t+1.

That is, compute the bounds [θmin,θmax] such that x t +θmind t and x t +θmax d t lie on
the boundary of the polytope, and draw θ ∼ U[θmin,θmax] and set x t+1 = x t + θd t .

Since P is a convex polytope, [θmin,θmax] can be computed as follows: letting λi =
(b−Ax t )i
(Ad t )i

, we have

θmin =max
i
{λi : λi < 0}

θmax =min
i
{λi : λi > 0}.

This defines a Markov chain with a stationary distribution equal to the desired uniform
distribution over P. Smith (1984); Lovász (1999) provide mixing time analysis for HAR.

To approximate a random sample of K = 1000 iid draws from the desired uniform distri-
bution, we run the HAR sampler for 50,000 iterations using a thinning factor of M .2We then
burn the first 10,000 iterations, and randomly sample K draws from the remaining 40,000
iterations. We use a thinning factor of M = 1500 for multiattribute and intertemporal choice
and M = 130000 for lottery choice. The sampler was implemented using parallelized code
developed in CUDA C.

As it is recommended that implementations of Markov chain Monte-Carlo samplers like
HAR use a warm start for the initial value x0 near the “center" of the polytope, i.e. away
from “corners" (Lovász, 1999), we start the HAR sampler at the p-center ofP, a notion of the
center of a polytope proposed by (Moretti, 2003). We use the iterative algorithm developed
in Moretti (2003) to approximate the p-center, and initialize x0 to this value.

2That is, we run HAR for (M+1)×50,000 iterations, storing every (M+1)th iteration. We use this thinning
procedure due to computational memory constraints; given the high dimensionality of the polytope, it is
infeasible to save every iteration of the sampler to memory.
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I Experimental Interfaces

I.1 Multiattribute Binary Choice
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I.2 Intertemporal Binary Choice
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J Additional Results and Applications

J.1 Characterization of Generalized L1-Complexity

Consider the generalized L1-complexity representation introduced in Definition 8, where
given a partition P over features I = {1, ..., n}, choice rates are given by

ρ(x , y) = G
�

U(x)− U(y)
dL1(x , y)

�

for continuous, strictly increasing G, where U(x) =
∑

E∈P uE(xE) and dL1(x , y) =
∑

E∈P |uE(xE)−
uE(yE)| for continuous, non-trivial uE : XE → R.
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Notice that in Definition 8, it is without loss to assume that utility is additively separable
over each feature: if utility is not additively separable over a set of features B ⊆ I , the analyst
can simply combine those features as a single joint feature XB = ×i∈BX i, and re-define the
representation over the set of joint features.Wewill therefore provide axiomatic foundations
for the generalized L1-complexity representation (G, P, (uE)E∈P) where each uE is additively
separable on its domain.

Our axiomatization will involve the same conditions as in Theorem 3, the characteri-
zation result for additively-separable L1 complexity, aside from a slight weakening of M4
(Dominance).

To state the new condition, we introduce a behavioral notion of resolvability, which
captures whether or not the DM understands how to resolve tradeoffs between a subset of
features. Say that E ⊆ I is resolvable if for any x , x ′, y ∈ X where ρ(x ′E x , x) = 1/2, we have
ρ(x ′E x , y) = ρ(x , y). In words, if the set of features E is resolvable, choice between two
options (x , y) is unaffected by the nature of tradeoffs present among features in E, so long
as the total value each option delivers across those features is unchanged. Additionally, say
that E is maximally resolvable if there does not exist E′ ⊃ E such that E′ is resolvable, and
say that E is non-resolvable if for all i, j ∈ E, {i, j} is not resolvable.

M4*. Dominance*: If x >D y , then ρ(x , y)≥ ρ(w, z) for all w, z ∈ X , where the inequality
is strict if ρ(wEz, z)< 1/2 for some maximally resolvable E ⊆ I .

Notice that M4* weakens M4; under M4*, the inequality ρ(x , y) ≥ ρ(w, z) is strict only if
z is undominated by w over all maximally resolvable collections of features, as opposed to
over all features as in M4.

Theorem 6. Suppose that all features are non-null and that there are at least three non-
resolvable features. Then a binary choice rule ρ satisfies M1, M3, M4*, M5, M7–M8 if and only
if it has a generalized L1 complexity representation (G, P, (uE)E∈P), where each uE is additively
separable.

Proof. The proof of necessity of M1, M3, M4*, M5, M7–M8 is straightforward, so we focus
on sufficiency. Let ⪰ be the stochastic preference relation induced by ρ. ⪰ satisfies coordi-
nate independence and inherits continuity from ρ, and since we have at least 3 non-null
attributes, we invoke Debreu (1983) to conclude that ⪰ has an additively separable repre-
sentation: there exists ui : X i → R, continuous, such that

x ⪰ y ⇐⇒
∑

k

uk(xk)≥
∑

k

uk(yk)
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Since all attributes are non-null and the Xk are connected, each uk(Xk) is a non-trivial
interval of R. Since the representation is unique up to cardinal transformations, we can
without loss assume that for each k ∈ I , uk(Xk) contains 0, and furthermore, since uk(Xk)
is a non-trivial interval, that uk(Xk) contains a non-trivial open interval around 0. For all
k ∈ I , let uk = sup uk(Xk) and uk = inf uk(Xk), taken with respect to the extended real line.

For all x ∈ X , define x̃ = (u1(x1), ..., uk(xk)) ∈ Rn. Let X̃ = { x̃ ∈ Rn : x ∈ X }. Let D̃ =
{(a, b) ∈ X̃ : a ̸= b} and define φ : D̃→ D satisfying φ(a, b) ∈ {(x , y) ∈ D : x̃ = a, ỹ = b},
and define ρ̃ : D̃ → [0,1] by ρ̃(a, b) = ρ(φ(a, b)). Lemma 8 implies that ρ̃ is a binary
choice rule on D̃ and does not depend on the selection made by φ: in particular, we have
ρ̃( x̃ , ỹ) = ρ(x , y) for all (x , y) ∈ D. This in turn implies that ρ̃ inherits our axioms M1,
M3, M4*, M5, M7–M9.

For all E ⊆ P, let uE : XE → R be defined by uE(xE) =
∑

k∈E uk(xk) for all x ∈ X . Note
that if there exists a strictly increasing, continuous function G and a partition P of I such
that

ρ̃(a, b) = G

�
∑

E∈P(
∑

k∈E ak −
∑

k∈E bk)
∑

E∈P |
∑

k∈E ak −
∑

k∈E bk|

�

for all (a, b) ∈ D̃ such that
∑

E∈P |
∑

k∈E ak−
∑

k∈E bk)|> 0, we are done, as this implies that
for any (x , y) ∈ D such that

∑

E∈P |uE(xE)− uE(yE)| > 0 ⇐⇒
∑

E∈P |
∑

k∈E( x̃k − ỹk)| > 0,
we have

ρ(x , y) = ρ( x̃ , ỹ) = G

�
∑

E∈P(uE(xE)− uE(yE))
∑

E∈P |uE(xE)− uE(yE)|

�

and by construction, for any (x , y) ∈ D such that
∑

E∈P |uE(xE) − uE(yE)| = 0, we have
x ∼ y and so ρ(x , y) = 1/2.

In what follows, we will work with ρ̃ defined on X̃ and drop the ∼ in our notation.
Following Lemmas 9–13 in the proof of Theorem 3, Continuity, Moderate Transitivity, Sep-
arability, and Tradeoff Congruence imply that ρ satisfies scale and translation invariance
and therefore satisfies Linearity; again following the same construction as in the proof of
Theorem 3, linearly extend ρ to {(x , y) ∈ Rn×Rn : x ̸= y}. Say that i =R j whenever {i, j}
is resolvable.

Lemma 19. If i =R j and j =R k, then i =R k.

Proof. Suppose i =R j and j =R k. Fix x , x ′, y ∈ Rn such that ρ(x ′{i,k}x , x) = 1/2. We want
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to show that ρ(x ′i,k x , y) = ρ(x , y). Define z, z′ ∈ Rn satisfying

zl =















x ′i l = i

x i + x j − x ′i l = j

xk l = k

wl =















x ′i l = i

x j l = j

x ′k l = k

Notice that zi + z j = x i + x j implies that ρ(z{i, j}x , x) = 1/2. Notice also that

z j + zk = x i + x j + xk − x ′i
= x j + x ′k
= w j +wk

and soρ(w{ j,k}z, z) = 1/2, where the second equality follows from the fact thatρ(x ′{i,k}x , x) =
1/2 =⇒ x i + xk = x ′i + x ′k. We have

ρ(x , y) = ρ
�

z{i, j}x , y
�

since i =R j

= ρ
�

z{ j,k}
�

x ′{i}x
�

, y
�

= ρ
�

w{ j,k}
�

x ′{i}x
�

, y
�

since j =R k

= ρ
�

w{i,k}x , y
�

= ρ
�

x ′{i,k}x , y
�

as desired.

Lemma 19 implies that =R defines an equivalence relation on I , and so the equivalence
classes of=R form a partition on I . Denote this partition by P. Note that since by hypothesis
there exists a set of 3 non-resolvable features, we have |P|> 3. Furthermore, it can be easily
shown that each E ∈ P is resolvable, since all pairs of attributes in E are resolvable.

Let X̂ = ×E∈PR, and let D̂ = {(a, b) ∈ X̂ × X̂ : a ̸= b}. For a ∈ X̂ , we will abuse notation
by letting aE ∈ R denote the dimension of a corresponding to the partition element E ∈ P.
For all x ∈ Rn, define x̂ ∈ X̂ where x̂E =

∑

k∈E xk for all E ∈ P. Define ψ : X̂ → Rn by

ψ(a)i =







aE i =min E for some E ∈ P

0 otherwise

38



for all a ∈ X̂ , and define ρ̂ on X̂ by ρ̂(a, b) = ρ(ψ(a),ψ(b)) for all (a, b) ∈ D̂. Note that ρ̂
is a binary choice rule, and directly inherits M1, M2, M3, and M5 from ρ.

To see that ρ̂ satisfies M4 (Dominance), fix (a, b) ∈ D satisfying ρ̂(aE b, b) ≥ 1/2 for
all E ∈ P, with a strict inequality for at least one E ∈ P, and fix any c, d ∈ D. This im-
plies ρ(ψ(a){k}ψ(b),ψ(b)) ≥ 1/2 for all k ∈ I with a strict inequality for at least one
k, and since ρ satisfies M4*, we have ρ(ψ(a),ψ(b)) ≥ ρ(ψ(c),ψ(d)) =⇒ ρ̂(a, b) ≥
ρ̂(c, d). Furthermore, suppose that ρ̂(cEd, d) < 1/2 for some E ∈ P. This implies that
ρ(ψ(c)Eψ(d),ψ(d)) < 1/2, and so again invoking M4* of ρ we have ρ(ψ(a),ψ(b)) >
ρ(ψ(c),ψ(d)) =⇒ ρ̂(a, b)> ρ̂(c, d); ρ̂ therefore satisfies M4.

By construction, X̂ contains at least three attributes. Note also that attributes of X̂ are
non-null with respect to ρ̂, a property inherited from ρ. By Theorem 1, there exists G

continuous, strictly increasing such that for all (a, b) ∈ D̂

ρ̂(a, b) = G

�
∑

E∈P(aE − bE)
∑

E∈P |aE − bE|

�

.

Now, fix any (x , y) ∈ D such that
∑

E∈P |
∑

k∈E xk −
∑

k∈E yk|> 0. We have

ρ(x , y) = ρ(ψ( x̂),ψ( ŷ)) since each E ∈ P is resolvable

= ρ̂( x̂ , ŷ)

= G

�
∑

E∈P( x̂E − ŷE)
∑

E∈P | x̂E − ŷE|

�

= G

�
∑

E∈P(
∑

k∈E xk −
∑

k∈E yk)
∑

E∈P |
∑

k∈E xk −
∑

k∈E yk|

�

by construction

as desired.

J.2 Joint vs. Separate Evaluation

Consider the finding of “scope insensitivity” in contingent valuation tasks: when assigning
a monetary valuation to a policy with a quantifiable impact, individuals are insufficiently
sensitive to the impact of the policy (see Toma and Bell, 2024, for a review).

To take an example, consider the following environmental policies:
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Program x : save 5400 endangered birds

Program y : save 12000 endangered birds.

Frederick and Fischoff (1998) find that when asked to assign a dollar value to one of the
two policies in a between-subjects design, respondents’ valuations are highly insensitive to
the impact of the policy, i.e. the number of birds saved. While this insensitivity could simply
reflect respondents’ preferences, Frederick and Fischoff (1998) also find that respondents’
valuations are far more sensitive to policy impact when they are asked to value multiple
policies jointly in a within-subjects design, as opposed to valuing a single policy in the
between-subjects design. That is, individuals’ valuations of options appear more sensitive
to fundamentals when made jointly as opposed to separately. Subsequent work has found
similar joint vs. separate evaluation effects, both in policy impact evaluation (e.g. Toma and
Bell, 2024) and more generally (see Hsee et al., 2009, for a review).

Our model provides a natural explanation of these findings: x and y are ostensibly dif-
ficult to compare to monetary values due to the tradeoffs involved, but are easy to compare
to each other: all else equal, it is clearly better to save more birds than less. As a result, the
compression effects in our model cause x and y to be valued too similarly when the options
are valued separately, but the additional information that y is superior to x contrasts the
valuations of x and y away from each other when the options are valued jointly, causing
the DM to appear more sensitive to policy impact.

We extend the multiple price list valuation framework presented in the main text —
which considers independent valuations of a single good — to joint valuations as follows.
Given options x , y to be valued jointly against a price list Z = (z1, ..., zn), define a joint valua-
tion task (x , y, Z) as the binarymenu sequence Ax ,1, ..., Ax ,n, Ay,1, ..., Ay,n, where Ax ,1, ..., Ax ,n =
{x , z1}, ..., {x , zn} and Ay,1, ...,Ay,n = {y, z1}, ..., {y, zn}.3 That is, the DM values both x and
y against the price list Z , where both options x and y are contained in the choice context.⁴

Notice that restricting to either price list Ax ,1, ..., Ax ,n or Ay,1, ..., Ay,n, this procedure yields
a single switching point in the DM’s choices: for any signal realization, there is an index
Rx ∈ {1, ..., n, n+ 1} for which the DM chooses x ∈ Ax ,k for all k ≥ Rx and the price zk ∈
Ax ,k for all k < Rx ; let R y be defined analogously. Let R(x , Z |y) and R(y, Z |x) denote the
distribution of the switching points Rx and R y induced by the DM’s choice probabilities. We

3As in the main text, we assume the options in the price list Z are unambigiously ranked, i.e. τz iz j =∞
for all i, j, and that vzk is strictly increasing in k.

⁴This setting can be straightforwardly extended to model joint valuations of three or more choice options.
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will be interested in how the DM’s joint valuations R(x , Z |y) and R(y, Z |x) compare to the
separate valuations R(x , Z) and R(y, Z).

To adapt the example to our setting, suppose that each outcome w = (w1, w2) is de-
scribed by two attributes, monetary payments w1 and number of birds saved w2, where
U(w) = w1+10/3·w2 – that is, the DM values the life of each bird at $3.33. The ease of com-
parison τ has an L1-complexity representation τL1

x y = H
�

|U(x)−U(y)|
dL1(x ,y)

�

for which H(1) =∞.
The DM is tasked with valuing the policies x = (0, bx), y = (0, by), where bx and by

denote the number of birds saved by the two policies, against a price list Z = (z1, ..., zn)
of monetary amounts, where each zk = (mk, 0). We consider two settings: one where each
policy is valued separately, and one where policies are valued jointly. As in the applications
to price list valuations in the main text, we associate each switching point R with a valua-

(a) Separate valuations.
(bx , by) = (5400, 12000).

(b) Joint valuations.
(bx , by) = (5400,12000).

(c) Separate valuations.
(bx , by) = (7200, 10800).

(d) Joint valuations.
(bx , by) = (7200,10800).

Figure 1: Separate and joint valuations of x = (0, bx), y = (0, by) against Z . Z contains evenly spaced pay-
ments ranging from 0 to 50 with |Z | = 21. τ has a L1-complexity representation with β = (1,10/3) and G
given by (1) with κ= 0,γ= 0.5. Priors are distributed Q ∼ U[0,1].
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tion equal to 1/2[wR−1 + wR]; each distribution over switching points therefore induces a
distribution over valuations.

Figure 1 plots these distributions simulated from our model under separate vs. joint
valuation, using two sets of (bx , by) values; here the vertical dashed lines indicate the true
valuations of x and y . Focusing first on Figures 1a and 1c, notice that compression effects in
our model produce scope insensitivity when x and y are valued separately; relative to their
true valuations, the DM appears insensitive to variation in policy impact. When the same
options are valued jointly as in Figures 1b and 1d, however, the valuation distributions are
repulsed away from each other and so the DM appears more sensitive to impact.

Importantly, our model does not predict that joint valuation necessarily improves the
accuracy of the DM’s assessments. While Figure 1b shows that joint evaluation improves
valuations in the case where the difference between bx and by is large, notice that when
the difference between bx and by is relatively small, joint evaluation causes the DM to
overstate the true difference between the impacts of the policies, as Figure 1d highlights.

These results also relate to “coherent arbitrariness” (Ariely et al., 2003): the idea that
whereas agents’ elicited preferences are unstable and subject to variant to irrelevant changes
in context, they nevertheless adhere to coherent comparative statics. In the joint valuations
in our model, even though the DM’s valuations are noisy and in some cases systematically
biased, they cohere with dominance.

J.3 Front-End Delays and Compounding

Invariance to Front-End Delays. Consider the present value equivalents task analyzed in
Section 3.4 of the main text, where the DM values delayed payments υ= (m, tυ) in terms of
a price list Z = (z1, , ..., zn) of immediate payments zk = (mk, 0). In addition to the finding of
apparent hyperbolic discounting in these tasks, experimental work has shown that adding
a front-end delay to the valuation task has a relatively small impact on the required rate of
return implied by subjects’ valuations (see Cohen et al., 2020, for a review). That is, subjects’
valuations exhibit near-stationarity with respect to front-end delays, which is seemingly at
odds with the high degree of apparent hyperbolicity implied by their valuations.

To see this, consider the predictions of a noise-free model of discounted utility (DU),
where the value of a delayed payment (m, t) is given by u(m)d(t) for some strictly decreas-
ing, potentially non-stationary discount function d satisfying d(0) = 1. Under such a model,
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the DM’s valuation of υ for a given front-end delay c is given by

m∗(t, c) = u−1
�

d(t + c)
d(c)

u(m)
�

This implies that if the DM’s discount function is hyperbolic or otherwise non-stationary,
valuations under DU must be sensitive to the front-end delay c. In particular, assuming u

strictly increasing, m∗(t, c) is constant in c if and only if d is stationary, i.e. an exponential
discount function. Figure 2a illustrates: if we calibrate a hyperbolic discount function d(t)
to the present value equivalents data from our valuation experiment⁵ (solid blue curve),
DU predicts a marked out-of-sample decrease in the required rate of return when front-
end delays are incorporated, i.e. when c > 0 (red dashed/dotted curves). In contrast, the
literature consistently documents pronounced hyperbolic discounting, yet minimal effects
of front-end delays Cohen et al. (2020).

Our model can rationalize the simultaneous existence of hyperbolicity in present value
equivalents as well as the weak effect of front-end delays. Intuitively, our model gener-
ates apparent hyperbolic discounting in valuations through pull-to-center effects that result
from the difficulty of trading off money and delays, a difficulty that is present regardless of
whether the valuation task features front-end delays. In particular, the ease of comparison
under CPF-complexity satisfies a stationarity property (see Appendix B.1), generating the
same degree of apparent hyperbolicity in valuations irrespective of front-end delays.

(a) Normalized valuations m∗(p, r)/w in present
value equivalents task with front-end delays un-
der Hyperbolic Discounting. Assumes linear u and
d(t) = (1+ ι t)−ζ/ι, for ι = 0.095, ζ= 0.022.

(b) Normalized valuations w∗(p, r)/w of com-
pounded certainty equivalents task under CPT. As-
sumes linear u and π(p) = χpν

χpν+(1−p)ν , for ν = 0.5,
χ = 0.9.

Figure 2: Predictions of deterministic models of non-stationary discounting and non-linear probability weight-
ing under front-end delays and compounding.

⁵See Section 4.3 from the main text.
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Formally, adding a front-end delay c > 0 amounts to a valuation task (υ(c), Z(c)),
wherein the DM values υ(c) ≡ (m, tυ + c) against Z(c) ≡ (z1(c), , ..., zn(c)) consisting of
delayed payments zk(c) ≡ (mk, c). Let PV Ec(υ, Z) = 1/2[mR(υ(c),Z(c))−1 + mR(υ(c),Z(c))] de-
note the distribution over the DM’s valuations of υ given a front-end delay c; notice that
PV E0(υ, Z) corresponds to valuations in a standard present value equivalents task with no
front-end delay, as defined in Section 3.4.

Under the maintained assumption that τ has a CPF-complexity representation τx y =
H
�

|PV (x)−PV (y)|
dC PF (x ,y)

�

, the ease of comparison between the delayed payment υ(c) and each price
zk(c) is invariant to the front-end delay c. As a result, the model generates the prediction
that PV E0(υ, Z) = PV Ec(υ, Z) — i.e. the DM’s valuations are stationary with respect to
front-end delays. At the same time, however, pull-to-center effects in the model can gener-
ate apparent hyperbolicity in PV E0(υ, Z), as demonstrated in Section 3.4.⁶

Invariance to Compounding.Ourmodel predicts an analogous invariance to compounding
in certainty equivalent tasks. Recall the certainty equivalents task analyzed in Section 3.4,
where the lottery l = (w, p) is valued in terms of certain payments Z = (z1, ..., zn) with
zk = (wk, 1). Now consider a compounded task, where the payout probabilities of all options
is compounded by a probability r ≤ 1 – that is, the DM values l(r) ≡ (w, rp) in terms of
the compounded certain payments Z(r)≡ (z1(r), ..., zn(r)), where zk(r)≡ (wk, r).

Consider the predictions of Cumulative Prospect Theory (CPT), in which the value of a
simple lottery (w, p) is given by π(p)u(w) for some weighting function π : [0,1]→ [0,1]
satisfying π(0) = 0, π(1) = 1. Under CPT, the DM’s valuation of l(r) for a given compound-
ing factor r is given by

w∗(p, r)≡ u−1
�

π(pr)
π(r)

u(w)
�

.

This expression implies if the DM’s probability weighting function is non-linear, valuations
will be sensitive to the compounding factor r; in other words, assuming u strictly increasing,
w∗(p, r) is constant in r if and only if π is linear, i.e. the DM has expected utility preferences.
Figure 2b illustrates: if we calibrate the CPT weighting function π(p) to the certainty equiv-
alents data from our valuation experiment⁷ (solid blue curve), CPT predicts a markedly

⁶Front-end delay experiments do tend to find some difference in required rates of return (Cohen et al.,
2020), consistent with the idea that individuals have some degree of “true” present-biased discounting. Under
the generalized CPF-complexity measure (Definition 8), which allows for a non-stationary discount function,
the model can rationalize these differences.

⁷See Section 4.3 from the main text.
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different out-of-sample pattern in the DM’s valuations in the compounded task, i.e. when
r < 1 (red dashed/dotted curves).

In contrast to these predictions, McGranaghan et al. (2024) find that normalized valu-
ations exhibit a virtually identical inverse-S pattern in the compounded task as in the stan-
dard certainty equivalents task. As they note, their findings are inconsistent with models of
probability weighting in the Kahneman and Tversky (1979) tradition of prospect theory.

Our model can rationalize the invariance of inverse-S weighting to compounding just as
it rationalizes the invariance of hyperbolicity to front-end delays. Intuitively, the apparent
probability weighting in our model is a consequence of pull-to-center distortions caused by
the difficulty of trading off probabilities and payouts in certainty equivalent tasks, a diffi-
culty that remains evenwhen the prospects in the task are compounded. Formally, under the
maintained assumption that τ has a CDF-complexity representation τx y = H

�

|EU(x)−EU(y)|
dC DF (x ,y)

�

,
the ease of comparison between between l(r) and each zk(r) in the price list is invariant to
r, which implies that the DM’s valuations are invariant to compounding.⁸ At the same time,
however, pull-to center effects in our model can generate apparent inverse-S probability
weighting, as Section 3.4 illustrates. Our model can therefore rationalize the simultaneous
presence of apparent non-linear probability-weighting in certainty equivalents, as well its
invariance to compounding.

J.4 Uncertainty Equivalents

Call l = (p; w, w′) a binary lottery if it pays out w with probability q and w′ otherwise. Con-
sider the “uncertainty equivalents” valuation paradigm studied in Andreoni and Sprenger
(2011): a binary lottery lp = (p; w0, w1) for 0 < w0 < w1 is valued in terms of probability
equivalents: the probability q that makes the binary lottery (q; w1, 0) indifferent to lp. Note
that expected utility theory predicts that q should be linear in p, whereas a number of mod-
els of non-EU risk preferences (e.g. probability weighting) predict a non-linear relationship.

Andreoni and Sprenger (2011) elicit probability equivalents q for a range of p ∈ [0, 1],
and find an essentially linear relationship between q and p along nearly the full range
of p, which they show is inconsistent with models of non-linear probability weighting and
disappointment aversion (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), both of which
predict a non-linear relationship. In other words, the probability weighting observed in
classic valuation tasks is seemingly at odds with behavior in uncertainty equivalent tasks.

⁸As Appendix B.1 shows, CDF-complexity satisfies a stochastic analog of the independence axiom for
binary comparisons.
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What does our model predict in this situation? Formally, the DM values lp against a
probability list Z = (z1, ..., zn), where each zk is a binary lottery zk = (qk, 0, w1). We will
restrict attention to probability lists that are adapted in the same sense as in the main text:
those consisting of evenly-spaced probabilities that extend to natural dominance points (i.e.
q1 = 1, qn = 1−p, and qk−qk−1 is constant in k). As before, we define the probability equiv-
alent associated with a switching point R(lp, Z) to be PE(lp, Z) = 1/2[qR(lp ,Z)−1 + qR(lp ,Z)].

Notice a key property of the uncertainty equivalents paradigm: the true valuation lies
in the same relative position along the range of undominated probabilities in the price list
[1 − p, 1], regardless of p. To see this, fix any Bernoulli utility function u. The DM’s true
uncertainty equivalent equals q∗(lp) = (1− p)+ u(w0)

u(w1)
p, and so the relative position of q∗(lp)

along [1− p, 1] is given q∗(lp)−(1−p)
1−(1−p) =

u(w0)
u(w1)

, which is constant to p. This implies that relative
position of the DM’s uncertainty equivalents along [1 − p, 1], while distorted by pull-to-
center effects, will also be constant in p. Our model therefore predicts that the uncertainty
equivalents of lp will be linear in p. The following result formalizes this intuition.

Proposition 13. Suppose Z is adapted to lp and |Z | is fixed at n. If τ has a CDF-complexity
representation, then E[PE(lp, Z)] is linear in p.

Proof. Fix any p. Since Z is adapted to lp, the payoff probabilities of the binary lotteries in
the price list zk = (qk; w1, 0) are given by qk = λkp+ (1− p) where λk =

n−k
n−1 . Notice that

τlp ,zk =
|(1−λk)p(u(0)− u(w0)) +λkp(u(w1)− u(w0))|
(1−λk)p|u(0)− u(w0)|+λkp|u(w1)− u(w0)|

=
|(1−λk)(u(0)− u(w0)) +λku(w1)− u(w0))|
(1−λk)|u(0)− u(w0)|+λk|u(w1)− u(w0)|

and so for each k, τlp ,zk is constant in p. This implies that the distribution of switching points
R(lp, Z) is constant in p. This in turn implies that

E[PE(lp, Z)] = 1/2 ·E
�

qR(lp ,Z)−1 + qR(lp ,Z)

�

= 1−
�

1− 1/2 ·E
�

λR(lp ,Z)−1 +λR(lp ,Z)

��

p

and so E[PE(lp, Z)] is linear in p.

Figure 3 plots the simulated probability equivalents E[PE(lp, Z)] as a function of p for
the values of (w0, w1) considered in Andreoni and Sprenger (2011). The simulated probabil-
ity equivalents indeed exhibit a linear relationship with p, largely consistent with the results
of Andreoni and Sprenger (2011). As such, our model is able to simultaneously explain both
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(a) (w0, w1) = ($10, $30). (b) (w0, w1) = ($30,$50).

(c) (w0, w1) = ($10, $50).

Figure 3: Probability equivalentsE[PE(lp, Z)] of binary lotteries lp = (p, w0, w1), where Z consists of yardstick
lotteries zk = (qk, 0, w1). Z is adapted to lp with |Z | = 15. τ has a CDF-complexity representation with
u(w) = wα and H(r) = (Φ−1(G(r)))2, for G given by (1) with κ= 0,γ= 0.5. Priors are distributedQ ∼ U[0,1].

the presence of apparent inverse-S probability weighting in the certainty equivalents of bi-
nary lotteries as in Section 3.4, and its absence in uncertainty equivalent valuation tasks.

Andreoni and Sprenger (2011) document one instance of non-linearity in subjects’ un-
certainty equivalents: while probability equivalents are linear in p along nearly the entire
unit interval, valuations of lp exhibit a slight upward deviation from this linear relationship
for p close to 1. They interpret this “certainty premium" pattern as evidence for a systematic
preference for certainty (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004), in which the
DM attaches a premium to riskless or near-riskless lotteries. Our model does not generate
this certainty premium, consistent with the idea that individuals may have a systematic pref-
erence for certainty that operates independently of our model of tradeoff-induced noise.⁹

⁹Models capturing a preference for certainty were developed to explain the classic Allais paradox, a
violation of independence in choices from binary menus that our model of CDF-complexity, which satisfies a
stochastic analog of the Independence axiom in binary choice, also cannot explain.
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