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Abstract

When faced with decision-relevant information, decision-makers are often exposed
to a multiplicity of different models, or accounts of how information should be inter-
preted. This paper proposes a theory of model selection — an account of what models
decision-makers find compelling, and ultimately adopt — based on the insight that
individuals seek decisive models that provide clear guidance regarding the best course
of action. The decisiveness criterion is characterized by a demand for extreme mod-
els, which generates inferential biases such as overprecision and confirmation bias,
but predicts meaningful bounds on the extent of these biases. The dependence of
the decisiveness criterion on the decision-maker’s objectives can produce documented
patterns of preference reversals, rationalize seemingly contradictory patterns of infer-
ential attribution errors, and generate novel predictions as to how belief polarization
can arise along heterogeneity in decision-makers’ objectives. I discuss applications
of the theory to financial decision-making, the provision of expert advice, and social
learning through the exchange of models.
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1 Introduction
When faced with uncertainty over the correct course of action, decision-makers are often
confronted with an abundance of potentially decision-relevant information. It is increasingly
understood that in order to make sense of this information, decision-makers often reason
through the lens of a model – an account of how information should be interpreted. When
an investor decides to sell a security because of a recent price drop, she acts based on a model
that relates price patterns to future performance. When a manager rejects a candidate on
the basis of a botched interview in spite of an impressive track record, she appeals to a model
specifying what information is most diagnostic of candidate productivity. A voter who bases
her political views on the reporting of certain news outlets while remaining skeptical toward
others operates according to a model that specifies the credibility of different sources. In
each of these cases, the decision-maker is guided by a framework, whether implicit or
explicit, that specifies what information is relevant to the decision at hand, and what
conclusions should be drawn from that information.

Decision-makers are often exposed to multiple candidate models: there are many plau-
sible ways to value a firm, evaluate a job candidate, or interpret the news, and these models
may be supplied by experts, encountered through social exchange, or developed through
introspection. In contrast to the rational expectations view, under which decision-makers
interpret data according to a well-calibrated model, decision-makers may not know the
true model that should guide their inference, and so must decide which model to adopt
for a given situation. In many cases, decision-makers are drawn to models that lead them
astray: professional forecasters overreact to market signals, hiring managers put too much
stock in noisy interview measures, and voters are misled by baseless claims and misinfor-
mation. When individuals seek to interpret information, what kinds of models do they find
compelling, and ultimately use to guide their decision-making?

One potential answer stems from the basic insight that people dislike indecision, an
observation which draws support from research in psychology. First, research on cognitive
dissonance has demonstrated that individuals seek to avoid the psychological discomfort
that arises from holding cognitions that are inconsistent with each other (Festinger, 1957),
and modern accounts of dissonance theory emphasize the role between dissonance and
indecision, wherein dissonance is aroused when “cognitions with action implications are in
conflict with each other, making it difficult to act” (Harmon-Jones et al., 2015). A second
line of research studies individuals’ need for cognitive closure, conceptualized as a ”desire to
have a definite answer to a question, as opposed to uncertainty, confusion and ambiguity”
(Kruglanski and Fishman, 2009). Under this account, individuals desire closure because it
affords “a base for action”, and research has studied how the need for closure affects how
individuals process information and revise their beliefs.1

If individuals are indeed averse to indecision, they may seek models that are decisive:
that provide clear guidance regarding the best course of action. In this paper, I propose

1More recently, Proulx and Inzlicht (2012) proposes a psychological framework of sense-making to unify
these two accounts, in addition to a broad range of related accounts and evidence in psychology. Under this
account, events that violate meaning — defined as a set of expected relationships that serve as a “guide
for action” — leads to a physiological state of aversive arousal, which individuals seek to reduce.
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a formal notion of decisiveness, under which a model is decisive to the extent it reduces
the decision-maker’s residual uncertainty over the optimal course of action; I then analyze
the inferences and choices of a decision-maker who is drawn to such models in interpreting
information. In my formal framework, a decision-maker chooses from a menu of actions A,
and observes the realization of data s that may be informative about the payoff-relevant
state θ. To take an example in which the decision-maker is evaluating a job candidate, A
may be the choice of whether to hire or reject the candidate, s is the information about
the candidate observed by the decision-maker, such as their qualifications and interview
performance, and θ is the underlying productivity of the candidate. In interpreting this
data, the decision-maker does not have access to the true data-generating process but in-
stead entertains a set of models: likelihood functions that map data to posterior beliefs over
states. For example, the decision-maker may entertain models under which interview per-
formance is highly diagnostic of productivity, in addition to models that instead emphasize
the diagnostic value of the candidate’s track record.

A model is decisive to the extent it recommends an action that, under the beliefs induced
by the model, is close to the ex-post optimal course of action. That is, given pm(θ|s), the
posterior over states θ induced by model m for the observed data s, the decisiveness of m
is

I(m|s) = −

[∑
θ

max
a′∈A

u(a′, θ)pm(θ|s)−max
a∈A

∑
θ

u(a, θ)pm(θ|s)

]
where u(a, θ) gives the payoff of action a if the state is θ. Note that decisiveness corresponds
to a payoff-metric measure of residual uncertainty: −I(m|s) is equal to the decision-maker’s
willingness to pay to resolve remaining uncertainty about the state, under the beliefs in-
duced by m. In other words, a model is decisive if a decision-maker operating under that
model ascribes little value — if such an alternative was available to her — to resolving
uncertainty prior to making her decision, instead of choosing the course of action recom-
mended by the model.

Decisive models make strong recommendations, but they may also lead the decision-
maker astray: a model suggesting that stock returns are highly predictable on the basis
of past returns will be decisive, but is also far from the truth. Decisive models need not
coincide with the true model governing the data-generating process, and to the extent the
decision-maker entertains such models, the decisiveness criterion will distort their beliefs
and decision-making. Importantly, in my framework the decision-maker does not know the
true model — she does not willingly commit to a model she knows is wrong. Instead, my
framework corresponds to a cognitive process in which the DM entertains a set of candidate
models and tries each on “for size”, assessing each model according to its implications for her
decision and ultimately adopting the model that feels the most compelling. As such, this
framework departs from certain theories of motivated beliefs in which the decision-maker
seeks to maintain a set of beliefs in spite of the errors that may arise when she acts on
them; rather, the decision-maker in my framework seeks decisive models precisely because
she is motivated to identify the correct course of action.

This paper analyzes the systematic distortions in inference and choice produced by
model selection under the decisiveness criterion. In particular, I show that the decisive-
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ness criterion is characterized by a demand for models that render the decision-maker’s
environment more predictable. This causes the decision-maker to exhibit forms of both
overprecision and confirmation bias: when initially uncertain over the optimal course of
action, the decision-maker favors models that overstate the diagnostic value of the data,
and when sufficiently predisposed towards a course of action, the decision-maker favors
models that minimize the diagnostic value of disconfirmatory data. I also show how the
dependence of the decisiveness criterion on the decision-maker’s objectives can produce
documented patterns of preference reversals, rationalize seemingly contradictory patterns
in social attribution, and generate novel predictions as to how belief polarization can arise
along heterogeneity in decision-makers’ objectives. Finally, I demonstrate how choice under
the decisiveness criterion exhibits an aversion to various forms of hedging against uncer-
tainty.

To illustrate the basic implications of the decisiveness criterion, consider a simple ex-
ample. Suppose that a manager is deciding whether or not to make an offer to a potential
internal hire to join her team. The candidate is either high-productivity (θh) or low-
productivity (θl), and the manager believes either possibility is equally likely ex-ante. The
manager’s payoffs are as follows:

θh θl
hire v −k
reject 0 0

That is, the manager wishes to hire the candidate only if they are high-productivity.
The manager has access to two components of information on the candidate: the can-

didate’s track record in their previous role, sR, and the candidate’s performance in a newly
developed interview assessment tailored to the current role sI . Suppose that performance
in either component c ∈ {R, I} can either be high (sc = 1) or low (sc = 0), and that the
manager is uncertain over the diagnostic value of each piece of information. In particular,
suppose the manager entertains three models: mR, under which only the candidate’s track
record has diagnostic value, mI , under which only the interview assessment has diagnostic
value, and mRI , under which both components hold equal diagnostic value. In particular,
denoting Lm(s

R, sI) = m(sR,sI |θh)
m(sR,sI |θl)

as the likelihood ratio associated with model m, we have

LmR
(sR, sI) =

{
4 sR = 1

1/4 sR = 0

LmI
(sR, sI) =

{
4 sI = 1

1/4 sI = 0

LmRI
(sR, sI) =


4 sI = sR = 1

1 sI ̸= sR

1/4 sI = sR = 0

Suppose that the candidate’s track record demonstrates high performance in their pre-
vious role, but that they perform poorly in the interview assessment: (sR, sI) = (1, 0).
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Which model does the manager adopt under the decisiveness criterion? Below, we consider
how the manager acts under two different hiring regimes, each of which dictate the relative
costs and benefits of hiring.

Growth regime: v = 4, k = 1. In this regime, the benefits of hiring a high-productivity
candidate are greater than the costs of hiring a low-productivity candidate; the manager
is therefore predisposed to hiring the candidate. Here, mR is the most decisive model.
The intuition is as follows: under mR the data suggests that the candidate is likely high
productivity, providing the manager with yet greater justification for hiring the candidate.
On the other hand, under mRI the data are inconclusive about candidate productivity, and
so this model provides weaker justification for hiring compared to mR. Under mI , the data
are bad news about the productivity of the candidate, an interpretation which, given the
manager’s decision problem, would result in her being maximally uncertain over whether
to hire or reject the candidate. As such, mR provides the most decisive recommendation
of the three models.

Downsizing regime: v = 1, k = 4. In this regime, hiring costs are high, and so the
manager is predisposed to rejecting the candidate. Here, mI is the most decisive model.
The intuition is analogous to the case above: while both mI and mRI recommend that the
manager reject the candidate, mI provides a stronger justification toward this course of ac-
tion, whereas under mR, the manager is maximally uncertain over whether to hire or reject.

This example illustrates two key properties of the decisiveness criterion. First, the
criterion tends to privilege extreme models — formally, models that cannot be expressed
as a mixture of other models the DM entertains. Note that in either case, the model mRI ,
which ascribes some diagnostic value to both the candidate’s track record and interview
performance, and can be expressed as the mixture of mR and mI , is never selected. The
intuition is as follows: if the manager prefers reject under mRI , mI provides yet stronger
justification towards reject, whereas if the manager prefers hire under mRI , mR provides
yet stronger justification towards that course of action; the manager must find mRI less
decisive than one of the extreme models, which will provide greater certainty regarding
her optimal hiring decision. Second, the decisiveness criterion depends crucially on the
decision-maker’s objectives, as the difference between the two regimes demonstrate: in
each regime, the model that supports the action that the manager is predisposed towards
choosing is more decisive than the model that provides discomfirmatory evidence.

The remainder of the paper is organized as follows: Section 2 develops the general
framework and introduces the decisiveness criterion. Section 3 characterizes the implica-
tions of the decisiveness criterion for model selection, holding fixed the action space and
payoffs. I show how model selection under the decisiveness criterion is principally charac-
terized by two key conditions, which formalize the notion in which the criterion privileges
models that render the decision-maker’s environment predictable: 1) the decision-maker
has a tendency to adopt extreme models — those that cannot be expressed as a mixture
of other models she entertains, and 2) the decision-maker has a preference for models that
induce high certainty in a single state. I apply these results to show how the decisiveness
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criterion generates forms of two documented patterns of biased inference: overprecision
and confirmation bias. In particular, the criterion predicts that if the decision-maker has
greater initial uncertainty with respect to her available courses of action, she will tend to
exhibit overprecision, seeking models that overstate the informational content of her sig-
nals. However, as the decision-maker’s prior sufficiently favors one course of action, she
will no longer uniformly exhibit overprecision, but instead seek models that explain away
disconfirmatory information, producing a form of confirmation bias. Finally, I illustrate the
relationship between my model selection criterion and related criteria, such as the Blackwell
ordering on experiments and notions of model parsimony.

Section 4 studies how model selection under the decisiveness criterion varies with the
payoffs and objectives of the decision-maker. First, I demonstrate that the decisiveness
criterion generates a “sour grapes” effect: the addition of an unchosen action a will lead the
decision-maker towards models that ascribe a low value to choosing a, as well as similar
actions. I show how this sour grapes effect predicts context effects documented in Tversky
and Shafir (1992), who show how the addition of an action to the choice set can reduce sub-
jects’ propensity to choose similar, competing actions, and instead induce them to choose
dissimilar actions. Next, I show how under the decisiveness criterion, the attractiveness of a
model is increasing in the relative attractiveness of the actions that the model recommends.
I demonstrate how this property can account for seemingly contradictory patterns in social
attribution in which individuals neglect the confounding influence of situational factors
when inferring dispositional traits of others from their behavior, yet make the opposite
error when interpreting poor behavior from ingroup members (Vonk and Konst, 1998). In
another application, I show how the same force can generate belief polarization resulting
from heterogeneity in decision-makers’ objectives and preferences.

In Section 5, I discuss implications for choice. I show that choice under the decisiveness
criterion is characterized by an aversion to hedging or diversification. In addition, I study
comparative statics of choice under the decisiveness criterion, focusing on a notion of relative
aversion to C-diversified actions — that is, actions whose payoffs fall short of the maximal
payoff that can be achieved in each state by a constant. I show that the decision-maker will
be more diversification-averse if she entertains a larger set of models, and that conversely,
a greater level diversification-aversion reveals that the decision-maker entertains a larger
set of models. In Appendix A.5, I provide an axiomatic characterization of the model and
discuss its identification properties. These results parallel those in Stoye (2011), which
studies a closely related model of min-max regret.

Section 6 discusses additional applications of the decisiveness criterion. Whereas the
basic framework takes the set of models the decision-maker entertains as primitive, each of
these applications considers a process that may give rise to this set. In the first application,
I analyze a setting in which expert advisors supply models to the decision-maker, and apply
the decisiveness criterion to shed light on why individuals are drawn to certain advice. I
demonstrate that this force, in conjunction with competition between advisors, induces
advisors to inflate the certainty of their recommendations. In the second application, I
analyze a setting in which social learning occurs through the exchange of models, following
the framework introduced in Schwartzstein and Sunderam (2022), and demonstrate that
the decisiveness criterion predicts group polarization arising from such a process.
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Section 7 extends the theory by specifying how the set of models the decision-maker
entertains may be constrained by their plausibility. I discuss two plausibility constraints,
one which assumes a cost of adopting far-fetched beliefs, the other which stipulates an entry
condition on the models the DM can entertain based on the notion of model fit developed
in Schwartzstein and Sunderam (2021).

Related Literature

This paper directly contributes to an active literature studying the implications of model
selection, which has focused on several distinct model selection criteria. One criterion
is model fit, corresponding to the notion that decision-makers are drawn to models that
explain the data well. In particular, the formal framework employed in this paper draws
directly from Schwartzstein and Sunderam (2021), who analyze “model persuasion” — in
which a persuader influences the model the receiver uses to interpret the realized data —
and assume that receivers employ a model selection criteria based on fit. Aina (2022) builds
on this framework, analyzing a setting in which the persuader commits to a set of models
prior to the realization of the data, whereas Schwartzstein and Sunderam (2022) adapt
the framework to study social learning based on the exchange of models. In contrast,
this paper focuses primarily on non-strategic contexts, in which the set of models the
decision-maker entertains is primitive; however, Section 6 discusses applications of the
decisiveness criterion to strategic and social learning contexts. Operating under different
formal frameworks, Izzo et al. (2021) and Hong et al. (2007) study the implications of
fit-based model selection, and focus on political persuasion and a non-strategic financial
decision-making context, respectively. Another criterion that has received attention in
the literature is optimism, corresponding to the notion that decision-makers are drawn
to “hopeful narratives”. Eliaz and Spiegler (2020) formalize narratives as causal models
(directed acyclic graphs) to study political persuasion, and posits a model selection criteria
based on optimism, whereas Caplin and Leahy (2019) studies the implications of model
selection based on optimism for belief polarization, trading decisions, and the formation of
asset bubbles.

The decisiveness criterion provides an account of what makes a model compelling that is
complementary to these existing approaches, and in particular delivers predictions distinct
from those of selection criteria based on fit or optimism. The fit criterion, for one, only con-
cerns how well models can explain past data, and is silent on how individuals may be drawn
to models due to their implications for future action. For example, one might imagine that
employers continue to place high stock in unstructured interviews (Dana et al., 2013) not
necessarily because such interviews have demonstrated explanatory power over the produc-
tivity of past hires, but because taken at face value, they provide strong recommendations
for hiring decisions. Similarly, investors may find technical analysis appealing not just
because it provides an explanation for realized price trends, but also because it often pro-
vides a clear recommendation on whether to buy or sell. Importantly, because a fit-based
model selection criterion is backward-looking, without further structure and assumptions,
such a criterion cannot account for the possibility that the model a decision-maker adopts
can be shaped by their objectives. On the other hand, while an optimism-based criterion
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takes seriously the idea that a model’s forward-looking implications may matter for model
selection, it is clear that decision-makers also regularly adopt models that do not induce
optimistic beliefs. For example, employers may overstate the diagnostic value of an inter-
view even if it produces bad news about the productivity of the candidate, and voters are
swayed by political spin often solely focused on casting the opposition in a negative light.
Because a decisive model need not lead to optimistic beliefs, as illustrated in the motivating
example, the decisiveness criterion can rationalize the adoption of such models.

Though the decisiveness criterion aims to capture a psychological notion distinct from
regret — namely, that individuals are drawn to clear recommendations that resolve indeci-
sion — the criterion is formally equivalent to a formulation of expected regret, and therefore
relates to a large literature studying the implications of regret aversion in decision-making
(e.g. Bell, 1982; Loomes and Sugden, 1982; Hayashi, 2008; Sarver, 2008; Stoye, 2011). This
literature studies how regret aversion may affect choices over actions or menus of actions,
corresponding to the psychology that the desire to avoid regret may affect choices prior
to the realization of uncertainty. This paper, on the other hand, focuses on the impli-
cations of a regret-based criterion for model selection and its subsequent implications for
decision-making, motivated by the notion that individuals find models compelling to the
extent that they guide future action. Formally, this theory has a tight connection to a
model of multiple-priors min-max regret studied in Hayashi (2008) and subsequently Stoye
(2011), in which the decision-maker chooses the action to maximize expected utility (min-
imize expected regret) under the regret-maximizing prior belief. My theory corresponds to
a model in which the decision-maker instead chooses to maximize expected utility under
the regret-minimizing prior belief. While the two models produce contrasting predictions
for both model selection and choice — for instance, min-max regret would predict that
the DM always selects mRI in the hiring example analyzed above, whereas the decisiveness
criterion predicts that the DM never selects mRI — the axiomatic characterization of my
model parallels that of Stoye (2011).

One paper that takes a related conceptual approach is Eyster et al. (2021), which de-
velops a model of ex-post rationalization in which a decision-maker adopts preferences to
minimize an ex-post notion of regret with respect to past choices, motivated by evidence
for the sunk-cost fallacy. This approach is both formally distinct from and complementary
to the approach taken in this paper, which develops a theory in which the decision-maker
adopts models that minimize ex-ante regret. In the hiring example analyzed above, for
instance, model selection under ex-post rationalization depends crucially on each model’s
implications for the optimality of actions the decision-maker has already taken, such as
previous hiring decisions. On the other hand, model selection under the decisiveness crite-
rion depends only on each model’s implications for the decision problem the decision-maker
currently faces.
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2 Framework and Decisiveness Criterion

2.1 The Decisiveness Criterion

Consider a decision-maker (the DM) with full-support priors q over a finite set of payoff
relevant states Θ, and updates her beliefs about Θ given a signal s ∈ S, where |S| ≥ 2.2
To relate observed signals to states, the DM relies on a model m : Θ → ∆(S), a likelihood
function mapping states to probability distributions over signals. The DM entertains a
closed set of models M ⊆ M, where M denotes the set of all models. Let mT denote the
true model that governs the data-generating process.

The DM faces a decision problem D = (A, u), where A is a set of actions and u :
A × Θ → R is the payoff function. Assume that D is well defined, in that for any beliefs
there will be a set of expected-utility maximizing actions, i.e. argmaxa∈A

∑
θ u(a, θ)p(θ) is

nonempty for all p ∈ ∆(Θ).
The timing is as follows: nature first draws the state θ and the signal s is generated ac-

cording to mT and is observed by the DM. The DM then adopts a model m ∈M , and forms
posteriors pm(·|s) according to Bayes rule, where pm(θ|s) = m(s|θ)q(θ)/(

∑
θ′ m(s|θ′)q(θ′)).

The DM then takes the action that maximizes the model-induced posterior expected utility;
let

Am
D (s) ≡ argmax

a∈A

∑
θ

u(a, θ)pm(θ|s)

denote the set of actions recommended by m, and say that m recommends a from D if
a ∈ Am

D (s). After the action is taken, the DM’s payoffs are then realized according to u
and the realized state θ.

We now specify the criterion that governs the DM’s model selection. For a posterior
belief p and decision problem D, let

RD(p) =
∑
θ

max
a′

u(a′, θ)p(θ)−max
a

∑
θ

u(a, θ)p(θ) (1)

denote the residual uncertainty associated with p: it is the average difference in utility
between the ex-post optimal action in each state and the ex-ante optimal action under p.
RD(p) can be interpreted as the DM’s willingness-to-pay to resolve uncertainty prior to
choosing an action given beliefs p. Define the decisiveness of a model m given realized
signal s as

ID(m|s) = −RD(p
m(·|s)). (2)

The DM adopts a model that maximizes decisiveness, satisfyingm ∈ argmaxm∈M ID(m|s).
Decisive models make strong prescriptions about the optimal course of action, where here
a prescription is strong in the sense that it recommends an action that is likely close to the
ex-post optimal action. That is, a model is decisive to the extent the DM ascribes little

2The assumption that q is full-support is without loss, as we can restrict attention to states on which
the DM’s prior places positive probability.
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value — if such a course of action was available — to resolving uncertainty prior to making
her decision, instead of choosing the course of action recommended by the model.

The decisiveness criterion captures a notion of what it means for a model to guide
action. Two related notions of guidance that are not captured by this criterion are model
consistency and parsimony. Individuals may seek models that provide consistent guidance
– that is, models that recommend the same action under many realizations of the data. For
example, consider a model of stock returns under which the price path follows a random
walk with positive drift; for any history of returns, the model’s recommendation is the
same: the DM should buy and hold. Such a model produces a consistent recommendation,
in contrast to models that recommend various strategies to time the market depending on
past returns. The decisiveness criterion will tend to privilege models of the latter kind over
the former: under this criterion, it is not the consistency of guidance that matters, but
rather its strength as measured by residual decision uncertainty. Individuals may also be
drawn to parsimony – that is, they may see a model as providing better guidance to the
extent it provides a simplified way of translating data into action, for instance, by directing
focus to certain features of the data while ignoring others. In Section 3.3, I show that
the decisiveness criterion does not universally privilege such simplified models, but rather
generates predictions as to when such models will be adopted.

Note that in this framework, model selection occurs ex-post: after the signal is realized,
the DM evaluates each model based on its decisiveness, given the signal realization, and
adopts the most decisive model. One might instead imagine an account in which the DM
evaluates each model according to an ex-ante notion of decisiveness, and adopts a model
prior to the signal realization. The ex-post notion may be more appropriate for analyzing
situations in which the DM faces a decision problem with an idiosyncratic information
structure, as in the motivating example, in which the manager seeks to make a one-off hire
on the basis of information specific to that particular candidate. Furthermore, because the
ex-post decisiveness of a model can be evaluated solely on the basis of its recommendation
given the observed signal realization, whereas ex-ante decisiveness requires the DM to
consider what the model would recommend for all possible signal realizations, ex-post
decisiveness may be more reasonable criterion for studying settings in which the set of
possible signal realizations may be large, unknown, or otherwise hard to imagine. The
ex-ante perspective, on the other hand, may be more appropriate for situations in which
the DM faces a sequence of decision problems that share a common information structure
– for example, if the hiring manager instead sought to evaluate a population of candidates
on the basis of their performance in a standardized test. While this paper focuses on the
ex-post notion of decisiveness, Appendix A.4 develops a formulation of ex-ante decisiveness
and compares these two formulations.

Finally, the fact that the decisiveness criterion is defined with respect to a decision
problem raises the question of how the theory can be applied to situations where the DM
does not face a particular decision problem but nevertheless has the opportunity to learn
from data. In such situations, one natural approach is to assume that the DM learns from
data as if they face a prediction problem — that is, as if they are tasked with reporting a
set of beliefs in A = ∆(Θ) and paid according to a scoring function u : ∆(Θ)×Θ → R. In
Appendix A.1, I characterize model selection under the class of prediction problems with
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incentive-compatible scoring rules.

2.2 Examples

The following set of examples illustrate the basic mechanics of the decisiveness criterion.
In each of these examples, we take the realized signal as given and work directly with
model-implied posteriors pm(·|s).

Example (Hiring Decision). Consider the hiring decision from the introduction. Here,
the payoff relevant states are the productivity of the candidate, Θ = {θl, θh}, and the DM’s
decision problem is given by the actions A = {hire, reject} and the payoff function

u(a, θ) =


v a = hire, θ = θh

−k a = hire, θ = θl

0 a = reject.

Fix a model m, and let pmh = pm(θh|s) denote the model-implied posterior belief in θh. For
pmh ≥ k

v+k
the DM chooses hire, and chooses reject otherwise. The residual uncertainty

associated with m is then

RD(p
m(·|s)) =

{
k(1− pmh ) pmh ≥ k

v+k

vpmh otherwise.

That is, models that induce beliefs toward either extreme tend to be more decisive, and
the range for which decisiveness is increasing in pmh is increasing in the value of hiring a
high-productivity worker v, and decreasing in the cost of hiring a low-productivity worker k.

Example (Prediction Market). The DM participates in a prediction market based on
a binary state Θ = {θA, θB}. There are two assets, A and B, which pay 1 if the corre-
sponding state is realized and 0 otherwise. The assets are priced at πA and πB, respectively,
with πA + πB = 1.

The DM is endowed with wealth w and chooses how much of each asset to purchase,
(xA, xB), and is risk averse with log utility. It is never strictly optimal for the DM to hold
positive amounts of each asset, and so letting a = xA − xB, it is without loss to describe
the DM’s decision problem using the action space A = [−w/πB, w/πA] and payoff function

u(a, θ) =

{
ln(w + a(1− πA)) θ = θA

ln(w − aπA) θ = θB.

Fix a model m, and let pmA = pm(θA|s) denote the model-induced posterior belief in θA.
First-order conditions imply that under m, the optimal allocation is a =

(pmA−πA)

(1−πA)πA
w.

Note that under state θA, the DM’s ex-post optimal choice is to invest all of her wealth
into asset A, which yields a payoff of ln(w/πA), and under state θB, the DM’s ex-post
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optimal choice is to invest all of her wealth into asset B, which yields a payoff of ln(w/(1−
πA)). The residual uncertainty associated with m is then

RD(p
m(·|s)) = − ln(1− pmA )(1− pmA )− ln(pmA )p

m
A

That is, the decisiveness criterion predicts that for this decision problem, the agent will
select the model that minimizes posterior entropy, given the data.

3 Properties of Selection Under Decisiveness
In this section, I show that model selection under the decisiveness criterion is principally
characterized by a a preference for extreme models — those that cannot be expressed
as a mixture of other models she entertains. In a series of applications, I discuss how
this extremeness property can predict both existing and novel forms of overprecision and
confirmation bias. I then discuss the relationship between the decisiveness criterion and
related model selection criteria.

3.1 Characterization of Model Selection Rule

For a decision problem D and signal s, let CD(M |s) ≡ argmaxm∈M ID(m|s) denote the
model choice correspondence under the decisiveness criterion. Because the regret function is
concave in beliefs for any decision problem, CD satisfies the following extremeness property:

Proposition 1. For m,m′ ∈ M , if m,m′ /∈ CD(M |s), then for any λ ∈ (0, 1), λm + (1−
λ)m′ ̸∈ CD(M |s). Furthermore, if Am

D (s) and Am′
D (s) are disjoint, then λm + (1 − λ)m′ ̸∈

CD(M |s).

In words, under the decisiveness criterion, the DM tends to adopt extreme models
— models that cannot be expressed as a mixture of other models in M — because the
decisiveness of a composite model obtained by averaging two models cannot exceed the
decisiveness of both of those models. Furthermore, if those two models recommend different
actions, then the composite model delivers strictly lower decisiveness.

An immediate consequence of Proposition 1 is that the decisiveness criterion “biases"
the DM against model averaging: if the true model mT is an average over models in M ,
Proposition 1 implies that mT will never deliver the strictly highest decisiveness among
the models M ∪ {mT}, and that so long as at least two models in M recommend different
actions, the DM will never select the true model.

For intuition as to why the DM finds such composite models unattractive, consider the
following example: the DM is trying to predict whether it will rain in an hour, and entertains
two models. m1 says that current humidity is the key predictor of rain, and m2 says that
cloud cover is the key predictor. Now consider a composite model m = 1

2
m1 +

1
2
m2 that

says that some mixture of humidity and cloud cover predict rain — the composite model
can be interpreted as saying that on any given day, humidity is the key predictor of rain
with 50% probability, and otherwise cloud cover is the key predictor of rain. Both m1 and
m2 provide a specific lens through which to interpret the data, whereas m leaves the DM
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uncertain over which of these two interpretations to use. As such, the DM will find that
one of m1 or m2 provides more compelling guidance than the composite model m.

Other than the extremeness property, what other properties govern model adoption
under the decisiveness criterion? The proposition below states that under regularity condi-
tions, the extremeness property, in conjunction with another property stating that models
that resolve all uncertainty must be adopted, fully characterize CD.

Proposition 2. A model choice correspondence C satisfies

1. Sen’s α, β: If m ∈ M ⊆ M ′ and m ∈ C(M ′), then m ∈ C(M). Also, if m,m′ ∈
C(M), M ⊆M ′ and m′ ∈ C(M ′) then m ∈ C(M ′).

2. Continuity: For all m ∈ M, {m′ ∈ M : m′ ∈ C({m,m′})} and {m′ ∈ M : m ∈
C({m,m′})} are closed.

3. Scale Invariance: For any m ∈ M, if m′ satisfies m′(s|θ) = λm(s|θ) ∀ θ, λ > 0, then
C({m,m′}) = {m,m′}.

4. Extremeness: For m,m′ ∈ M , if m,m′ /∈ C(M), then for any λ ∈ (0, 1), λm + (1 −
λ)m′ ̸∈ C(M).

5. Certainty Preference: If m(s|θ) = 1 for any θ ∈ Θ and m ∈M , then m ∈ C(M).

if and only if there exists a decision problem D and signal s such that C(M) = CD(M |s)
for all M ⊆ M.

Sen’s α, β reflects the fact that the decisiveness criterion induces a total order over M
for a given decision problem. Scale Invariance ensures that models that induce the same
posterior over states are equivalent under the model selection criteria.

Extremeness captures the property discussed in Proposition 1. Certainty Preference
says that any model that induces certainty in an outcome must always be adopted, as such
a model entirely eliminates residual uncertainty. Together, Extremeness and Certainty
Preference formalize the notion in which the decisiveness criterion privileges models that
render the decision-maker’s environment predictable. Below, I show how these properties
can account for documented patterns of belief updating, as well as produce new predictions.

3.2 Applications

3.2.1 Overprecision

A large experimental literature has documented that individuals exhibit overprecision —
the tendency to be excessively confident in the accuracy of one’s beliefs (Moore et al., 2015).
In a common experimental paradigm, subjects are asked to predict a binary outcome, and
state their belief that their prediction is correct. Across a variety of domains, subjects’
estimates of their own accuracy exceed their actual hit rates. Similarly, studies eliciting
subjects’ subjective confidence intervals around their estimates of continuous outcomes find
that these confidence intervals tend to be too narrow.
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A natural consequence of Proposition 1 is that the DM will exhibit overprecision in the
following sense — the DM will tend to overstate the informational content of her signal.
Formally, fix any decision problem D and the realization of the signal s. Let mT denote the
true model that describes the DM’s actual experiment, and let m∅ denote an uninformative
model for which m(s|θ) is constant in θ. Proposition 1 implies the following result:

Corollary 1. Consider a model m satisfying λm + (1 − λ)m∅ = mT for λ ∈ (0, 1). If
ID(mT |s) > ID(m∅|s), then ID(m|s) > ID(mT |s).

Here, m can be interpreted as a model that overstates the informational content of
the true experiment mT , which is a mixture of m and noise. Corollary 1 states that to
the extent the DM entertains such models that overstate the informativeness of the their
experiment, those models will be favored over the true model, so long as the DM finds the
true model more decisive than her prior.

Example (Overprecision in Hiring). Suppose a hiring manager wishes to learn whether a
candidate is high-productivity (θh) or low productivity (θl), and holds a prior belief q. The
employer observes a signal s of productivity and chooses from a set of actions (e.g. hir-
ing/rejecting the candidate). Suppose that ID(mT |s) > ID(m∅|s) — that is, the manager’s
signal reduced her residual uncertainty regarding which action to take under the true model.
Suppose the manager also entertains a model m that overstates the decisiveness of her sig-
nal in the sense described earlier: m satisfies λm+(1−λ)m∅ = mT for λ ∈ (0, 1); Corollary
1 implies that the hiring manager will adopt m over the true model mT . Given the binary
state setting, the implications for the manager’s posterior beliefs are straightforward: if
under the true model, s is good news about productivity, with q(θh) < pmT (θh|s), then m
induces yet a higher belief in productivity, with pm(θh|s) > pmT (θh|s); similarly if under
the true model s is bad news about productivity, then m induces yet a lower belief in pro-
ductivity. In other words, the manager overstates her ability to discern high-productivity
candidates from low-productivity candidates.

To relate this example to the two-alternative forced-choice paradigm used in experimen-
tal tests for overprecision, suppose that the manager’s decision problem consists of a binary
prediction g ∈ {θl, θh} regarding the candidate’s productivity, as well as an estimate ϕ of
the probability that the prediction will be correct. Formally, we have A = {θh, θl} × [0, 1],
with u((g, ϕ), θ) = u1(g, θ) + u2((g, ϕ), θ), where

u1(g, θ) =

{
1 g = θ

0 otherwise

u2((g, ϕ), θ) =

{
−(1− ϕ)2 g = θ

−ϕ2 otherwise

That is, the manager is incentivized to predict the candidate’s type, and is incentivized to
provide an accurate assessment of how likely her prediction is to be correct.

Suppose that q(θh) = 0.5, and that as before, the DM entertains the true model mT , as
well as the model m as defined above. Here, we have ID(mT |s) ≥ ID(m∅|s) for all s, which
implies that ID(m|s) ≥ ID(m∅|s): the manager overreacts to her signal about productivity.
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Consider the case where s is good news about productivity — the manager predicts pro-
ductivity to be θh after observing s. Under the true model, the probability that manager’s
prediction is correct is given by pmT (θh|s), but since the manager finds m more decisive
than mT , the manager instead reports a confidence level of ϕ = pm(θh|s) > pmT (θh|s).
Analogously, when s is bad news about productivity, the manager reports an inflated con-
fidence level in her prediction equal to ϕ = pm(θl|s) > pmT (θl|s). Therefore, when faced
with with a population of candidates, the manager is systematically overconfident in her
predictions about productivity. ▲

Note that a key condition for overprecision is that ID(mT |s) > ID(m∅|s): under the
true model, the realized signal s must (weakly) reduce the DM’s residual uncertainty over
the optimal course of action. In other words, the DM is more likely to exhibit overpreci-
sion in situations where she is initially uncertain over the optimal course of action. For
instance, if we suppose that the hiring manager in the previous example has binary actions
{hire, don’t hire}, the manager will tend exhibit overprecision when her prior beliefs leave
her close to indifferent between hiring and not hiring.

In contrast, consider the case where ID(mT |s) < ID(m∅|s) the signal increases the
manager’s residual uncertainty over the optimal course of action. For instance, it may be
the case that the manager’s prior beliefs strongly recommend that she hire the candidate,
but she receives a signal to the contrary that would push her to greater uncertainty over
whether to hire under mT . In this case, the decisiveness criterion instead predicts that the
manager may seek models that minimize the informational content of her signal, a form of
confirmation bias. The next section studies exactly this implication.

3.2.2 Confirmation Bias

Consider a setting with binary states: Θ = {θl, θh}; fix the decision problem D and signal
realization s. Say that m is in favor of θh if m(s|θh) ≥ m(s|θl), and that m is in favor of θl
if m(s|θh) ≤ m(s|θl). Also, say that a model m is interior if pm(·|θ) ̸= δθ for any state θ.
The DM then exhibits confirmation bias in the following sense:

Corollary 2. For any interior m in favor of θh, there exists a threshold prior belief p > 0
such that if q(θh) ≤ p, ID(m′|s) ≥ ID(m|s) for any m′ in favor of θl. Furthermore,
for q(θh) ≤ p and any m′′ satisfying m′′(s|θh)/m′′(s|θl) ≤ m(s|θh)/m(s|θl), we also have
ID(m

′|s) ≥ ID(m
′′|s) for any m′ in favor of θl.

In words: given modelm providing evidence towards one conclusion, there exists a range
of prior beliefs favoring the other conclusion under which the DM finds models that agree
with her prior more decisive than m. Furthermore, this range of prior beliefs is decreasing
in the strength of the evidence under m.

Example (Prior-Based Polarization). Following the classic experimental setup of Dar-
ley and Gross (1983), suppose that there are two subjects whose priors disagree about
the state Θ = {θh, θl} (in their experiment, the reading ability of a student), but who are
otherwise identical. In particular, we have qA(θh) > qB(θh): subject A believes θh is more
likely whereas subject B believes θl is more likely.
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Suppose that both subjects receive the same signal s (results from an ability test),
where there is uncertainty over how to interpret s (e.g. uncertainty over how difficult or
diagnostic the test is): both subjects entertain models in favor of θh and in favor of θl.
Assume that the evidence does not completely resolve the debate; all models the DMs
entertain are interior.

Corollary 2 states that there exists p, p ∈ (0, 1) such that if qA(θh) > p and qB(θh) < p,
subject A will adopt a model in favor of θh and subject B will adopt a model in favor of θl
— that is, after observing the same common signal, beliefs become increasingly polarized.
Darley and Gross (1983) and similar studies (Lord et al., 1979; Plous, 1991) document
exactly this kind of belief polarization along prior beliefs. ▲

The decisiveness criterion not only rationalizes the evidence for confirmation bias dis-
cussed above, but also produces predictions regarding the when the bias is likely to arise,
as the example below illustrates.

Example (Confirmation Bias in Hiring). Consider again the hiring manager example
from the discussion of overprecision. Suppose that the hiring manager faces the decision
problem

θh θl
hire v −k
reject 0 0

and that under the true model, r ≡ mT (s|θh)/mT (s|θl) > 1; under the true model, s is good
news about the productivity of the candidate, where r denotes the diagnostic strength of
this signal. Note that residual uncertainty is increasing in p(θh) for p(θh) ∈ [0, k/(k + v)].
Bayes’ rule implies that so long as q(θh) < k

rv+k
, pmT (θh) < k/(k + v), and so for q(θh) <

rk
v+rk

, the hiring manager prefers the uninformative model m∅ over the true model mT . In-
tuitively, for q(θh) low enough, the hiring manager is confident that rejecting the candidate
is the right call, and so will ignore a disconfirmatory signal that induces greater uncertainty
over whether she should hire. ▲

This analysis demonstrates two key predictions that the decisiveness criterion makes
regarding confirmation bias. First, the decisiveness criterion predicts limits to confirmation
bias: if under the true model the disconfirmatory signal is sufficiently informative — that
is, if r is large — the DM will find the true model more decisive than the uninformative
model, and so will not exhibit confirmation bias. In fact, the analysis on overprecision
implies that in such cases the DM will instead exhibit overinference — to the extent there
are interpretations of the data that overstate the informational content of the signal, the DM
will select these interpretations. These limits to confirmation bias depend in an intuitive
way on the DM’s prior: the more certainty afforded by the DM’s prior, the greater scope
of disconfirmatory models the DM will find less decisive than the uninformative model.

The second prediction is that the DM’s decision problem determines the regions of
prior beliefs where confirmation bias operates. This is clearly illustrated in the above
example: fixing the signal strength, parameterized by r, the DM exhibits confirmation bias
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for priors in the region q(θh) ∈ [0, k
rv+k

]. We can see that as v increases — that is, as
hiring the candidate becomes a more attractive option — greater certainty in the DM’s
prior is required to sustain confirmation bias toward maintaining a negative view of the
candidate. Contrast this to approaches to modeling confirmation bias in which the region
of priors in which the bias is operates is exogenously determined, such as Rabin and Schrag
(1999), where confirmation bias occurs for q ∈ [0, 0.5) and q ∈ (0.5, 1]. Under my model,
a disconfirmatory signal is not necessarily one that moves the DM’s beliefs towards 50-50,
but rather one that reduces DM’s confidence in the course of action they would have chosen
in the absence of the signal.

Taken together, the results on overprecision and confirmation bias imply that the DM’s
beliefs will exhibit the following pattern, to the extent the DM entertains models that both
overstate and understate the decisiveness of her signal: if the DM is initially uncertain
(with respect the optimal course of action), she will exhibit overreaction to information.
However, if the DM’s prior is sufficiently concentrated in one state, she will tend to under-
react to disconfirmatory news while continuing to overreact to confirmatory news. As such,
the decisiveness criterion predicts the tendency of individuals to both “jump to conclusions"
— evaluators form strong impressions based on unreliable diagnostic tools, noise traders
act on illusory correlations in price data, and forecasters are overstate the accuracy of their
estimates — and, once strong convictions have been formed, to explain away disconfirma-
tory evidence: stereotypes tend to persist even in the face of counterexamples, and initial
disagreement can become increasingly polarized in light of new information.

3.3 Comparison to Alternative Selection Criteria

3.3.1 Decisiveness vs. Parsimony

Given the complexity of information decision-makers are often confronted with, it is plausi-
ble that individuals may seek parsimonious models of the world to organize data and make
decisions, consistent with the view that individuals are “cognitive misers" (Kahneman and
Tversky, 1973). Does the decisiveness criterion generate a demand for parsimonious mod-
els? Given the difficulty of formalizing a general notion of model complexity, I instead
outline key intuitions regarding how the decisiveness criterion relates to a demand for
model parsimony through a simple setting, first analyzed in Hong et al. (2007).

The DM is trying to predict whether the price of a stock will increase (θh) or decrease (θl)
in the following period, and observes two sources of news: s = (sA, sB), where si ∈ {0, 1}
for i = A,B. Motivated by the view that individuals are “cognitive misers" and so seek
simplified models of the world, Hong et al. (2007) analyze a situation in which the DM
selects one of two models, each of which uses only a single news source (either A or B) to
predict the stock price. In this example, I study when the decisiveness criterion generates
demand for such parsimonious models.

Formally, say that model m ignores news source i if for any realization of s−i, posterior
beliefs are constant in the value of si, i.e.

m(si = 1, s−i|θh)
m(si = 0, s−i|θh)

=
m(si = 1, s−i|θl)
m(si = 0, s−i|θl)

.
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First, note that under the unrestricted model space M, given any signal realization, a
model that ignores source i can implement any posterior belief, as can a model utilizing
both news sources. As a result, without further structure on the model space, both classes
of models are equally privileged under the decisiveness criterion. As such, we impose the
following structure on M : suppose that M contains the set of models m satisfying the
following conditions:

1. Underm, the sA, sB are independent conditional on θ. Letm(si|θ) =
∑

s−i
m(si, s−i|θ).

2. m(si|θ) ∈ [qi, qi] ⊂ [0, 1] for all θ, i.

3. m(si = 1|θh) ≥ m(si = 1|θl) for i = A,B.

Condition 2 ensures that that no model completely eliminates residual uncertainty, and
Condition 3 implies an ordering on news: si = 1 implies good news about the stock price,
whereas si = 0 implies bad news. Under these conditions, the signal realization crucially
determines whether the DM selects a model that ignores a news source, as the following
cases illustrates.

Case 1: Mixed signals. Suppose that sA = 1, sB = 0 (the analysis is identical for the
case where sA = 0, sB = 1). In this case, the set of models that the DM adopts, for any
decision problem, are models that ignore either source A or B. To see this, note that any m
that maximizes pm(θh) must ignore source B, the source delivering bad news; similarly, any
m minimizing pm(θh) must ignore source A, the source delivering good news. Proposition
1 implies that only models implementing these extreme beliefs will be selected under the
decisiveness criterion (ignoring ties in the decisiveness ranking) for any decision problem.

Case 2: Aligned signals. Suppose that sA = 1, sB = 1 (the analysis is identical for the
case where sA = 0, sB = 0). In this case, the set of models the DM adopts, for any decision
problem, are models that either ignore both sources, or take both sources into account. The
logic is similar to the case above: any m that maximizes pm(θh) must take both sources
into account, and any m minimizing pm(θh) must ignore both sources.

Under the decisiveness criterion, the DM does not value parsimony per se, as the contrast
between the two cases illustrates: the DM adopts the simplified models considered in Hong
et al. (2007) only when the two sources produce conflicting news. Under this account,
the DM dislikes incorporating additional dimensions into her model to the extent these
dimensions increase her residual decision uncertainty. As such, to the extent that news
sources are correlated under the true model and therefore are more likely to agree, the DM
will more often adopt models that take these multiple sources into account. However, to
the extent news sources are independent and therefore more likely to disagree, the DM will
tend to adopt models that selectively attend to certain sources.3

3Note that such models need not be “simple”; a model that assigns differing diagnostic weights to each
news source is arguably more complex than a model that treats each source as identical, and yet will tend
be more decisive in the case of mixed signals.

17



3.3.2 Decisiveness vs. Blackwell Ordering

Note that in my framework, each model m is a Blackwell experiment (Blackwell, 1953),
and so can be ranked according to the Blackwell ordering, a measure of the informativeness
of an experiment. Formally, m dominates m′ in the Blackwell order if for all priors q and
decision problems D = (A, u),∑

s

∑
θ

max
a∈A

u(a, θ)pm(θ|s)pm(s) ≥
∑
s

∑
θ

max
a∈A

u(a, θ)pm
′
(θ|s)pm′

(s)

where pm(s) =
∑

θm(s|θ)q(θ) gives the likelihood of observing s under model m.

While both the decisiveness criteria and the Blackwell order capture notions of the in-
formativeness of a model, note that the decisiveness criteria does not respect the Blackwell
order. To see why not, as Section 3.2.2 on confirmation bias demonstrates, a completely
uninformative model m∅ may be more decisive than an informative model m, whereas m
necessarily dominates m∅ in the Blackwell order. The key distinction driving the discrep-
ancy is that the decisiveness criterion is an ex-post notion of informativeness evaluated for
a given signal realization, whereas the Blackwell order is an ex-ante notion. Indeed, it can
be shown that if m dominates m′ in the Blackwell order, then the average decisiveness of
m must be greater than that of m′:

∑
s ID(m|s)pm(s) ≥

∑
s ID(m

′|s)pm′
(s).4 As such, even

if m is more decisive than m′ on average, for some signal realizations it may be the case
that m′ is more decisive than m.

4 Selection as a Function of Payoffs and Objectives
In this section, I study how model selection under the decisiveness criterion varies with
the objectives of the DM. I show how these comparative statics can generate documented
context effects and attribution errors, as well as predict novel forms of belief polarization.

4.1 Maximal Payoff Profile Improvements

Consider two decision problems D = (A, u),D′ = (A′, u), where A′ = A∪{a′}. Say that D′

improves the maximal payoff profile of D if u(a′, θ) > maxa,∈A u(a, θ) for some θ — that is,
D′ is formed from D by adding an action a′ that improves the maximal payoff for at least one
outcome. For such payoff profile improvements, let ∆uθ = maxa∈A′ u(a, θ)−maxa∈A u(a, θ)
denote the improvement in the maximal payoff associated with state θ when moving from
D, to D′.

The following gives a condition on how model selection must respond to such payoff
profile improvements, in the case where the payoff profile-improving action a′ is not chosen:
Proposition 3. Fix the menu of models M . Suppose D′ improves the maximal payoff
profile of D via a′. Then, for any m ∈ CD(M |s) and m′ ∈ CD′(M |s), if m′ does not
recommend a′ from D′, then m′,m must satisfy

∑
θ p

m′
(θ|s)∆uθ ≤

∑
θ p

m(θ|s)∆uθ.

4In Section 7.2, I analyze precisely this formulation of ex-ante decisiveness, and contrast its predictions
with the ex-post formulation.
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To parse this condition, consider the case where a′ improves the maximal payoff associ-
ated with a single state θ. In this case, the proposition states that pm′

(θ|s) ≤ pm(θ|s): any
change in models must result in lower posterior beliefs in the state for which a′ improves
the maximal payoff. When a′ improves the maximal payoff associated with multiple states,
the proposition states that any change in models must result in a lower payoff-weighted
average of posterior beliefs in the improved states. For intuition behind this result, recall
that the decisiveness criterion favors models that concentrate beliefs in states under which
the recommended action will be ex-post optimal. The addition of an unchosen action that
increases the maximal achievable payoff for a set of states therefore reduces the decisiveness
of models that induce high beliefs in those states.

This comparative static on the DM’s choice of model selection has implications for
the DM’s choice of action: the addition of an unchosen action a leads the decision-maker
to select models that recommend against choosing a, as well as similar actions. This
implication is most clear in the case of binary states, as summarized in the corollary below:

Corollary 3. Consider a binary state setting, where Θ = {θh, θl}. Suppose D′ improves the
maximal payoff associated with θh of D via a′. If a′ is not among the actions chosen in D′,
then for any action a chosen from D and any action a′′ chosen from D′, u(a, θh) ≥ u(a′′, θh)
and u(a, θl) ≤ u(a′′, θl).

This prediction can account for findings in the experimental literature in which the
addition of an unchosen action reduces subjects’ propensity to choose similar actions.

Example (Reason-Based Choice). Consider the following experimental finding from Tver-
sky and Shafir (1992). Subjects decide whether to buy a CD player. In the first treatment
(the low-conflict treatment), subjects can choose to either buy a mid-range CD player or
to defer the purchase. In the second treatment (the high-conflict treatment), subjects can
choose to either buy a mid-range CD player, buy a top-of-the-line CD player, or defer
the purchase. They find that the proportion of subjects choosing to defer the purchase is
greater in the high-conflict treatment vs. the low-conflict treatment. Tversky and Shafir
(1992) interpret these findings as suggesting that in the high-conflict treatment, subjects
looking to buy a CD player need to weigh the lower price of the midrange model against
the higher quality of the top-of-the-line player, a difficult tradeoff that makes deferring the
purchase an easier decision to justify.

To translate this setting into the framework, normalize the DM’s payoff from deferring
to 0, and suppose that the DM’s payoff from purchasing a CD player is θq−k, where q and
k are the quality and price of the player, and θ parameterizes how much the DM weighs
quality over price. Suppose that the DM is uncertain about the value of θ, and suppose
that this state is binary: θ ∈ {0, 1}. Let (ql, pl) and let (qh, ph) denote the price and quality
of the mid-range and top-of-the-line CD player, respectively, and suppose that kh > kl and
vh > vl > 0, where vh ≡ qh − kh and vl ≡ ql − kl denote the net quality of the products.
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The decision problems corresponding to the low-conflict and high conflict treatments are

Dlow : Low-conflict
θ = 1 θ = 0

midrange vl −kl
defer 0 0

Dhigh : High-conflict
θ = 1 θ = 0

top-of-line vh −kh
midrange vl −kl
defer 0 0

.

Suppose further that kl/(vl + kl) < kh/(vh + kh) — that is, conditional on choosing to
purchase a CD player, the choice is not obvious — there exists a range of beliefs for which
the DM prefers midrange over top-of-line, and vice versa.

To begin, fix a signal realization s; we will first show there exists some set of models
M such that if the DM entertains M , she will choose midrange in the low-conflict treat-
ment and defer in the high conflict treatment5. First note that by Proposition 1, we can
restrict attention to the extreme models m, m satisfying m ∈ argmaxm∈M pm(θ = 1|s)
and m ∈ argminm∈M pm(θ = 1|s), respectively; Let p = maxm∈M pm(θ = 1|s) and
p = minm∈M pm(θ = 1|s) denote the respective extreme posteriors.

Suppose that M is such that p < kl/(vl + kl), kl/(vl + kl) < p; the DM’s choice of
model is material for whether she buys a CD player or not. Proposition 3 then implies
that if p < kh/(vh + kh) — that is, no model recommends top-of-line — the addition of
top-of-the-line must increase the decisiveness of m relative to m. It can be shown that for
some M , this leads the DM to switch from m in the low-conflict treatment to m in the
high-conflict treatment, which in turn induces a switch from midrange to defer 6.

Therefore, adding an unchosen alternative, the top-of-the-line player, can cause the DM
to switch from the midrange player to deferring the decision via a change in models from m
to m. The addition of the top-of-the-line player makes m a less satisfying justification for
the DM’s decision, as m now leaves the DM uncertain about which player to buy, causing
the switch to m, which makes a comparatively more decisive recommendation that the DM
should defer the purchase.

Now, note that if the DM chooses defer under in the low-conflict treatment, she must
also choose defer in the high-conflict treatment. To see this, let m be the model selected
under Dlow and take any m′ ∈ M that does not recommend defer from Dhigh; let pm =
pm(θ = 1|s), pm′

= pm
′
(θ = 1|s) denote the respective model-induced posteriors. By

assumption, we have IDlow
(m|s) > IDlow

(m′|s) which implies pmvl < (1− pm
′
)kl; this, along

with the maintained assumptions on k and l, implies that IDhigh
(m|s) > IDhigh

(m′|s). In line
with the intuition behind Proposition 3, the addition of top-of-line penalizes models that
place higher weight on the improved state θ = 1, which precludes a switch from midrange
to defer.

Therefore, for any signal realization, the DM may switch from midrange in the low-
conflict treatment to defer in the high conflict treatment, but must choose defer in the

5An underlying signal structure in this application could involve, for example, the models specifying
different interpretations of an advertisement the DM received regarding the CD players.

6The set of p and p that yield this choice pattern is characterized by the condition p ∈[
(1−p)kl

vh
, (1−p)kl+p(vh−vl)

vh

]
which is non-empty given the maintained assumptions p < kl/(vl + kl),

kl/(vl + kl) < p < kh/(vh + kh)
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high-conflict treatment if she chose defer in the low-conflict treatment. As such, fixing any
probability distribution governing over signals, the proportion of subjects choosing defer
in the high-conflict treatment is higher compared to that of the low-conflict treatment, in
line with the experimental findings.7 ▲

4.2 Reductions in Action Value

Consider two decision problems D = (A, u),D′ = (A, u′). Say that action a∗ ∈ A is
uniformly worse in D′ relative to D if u′(a∗, θ) ≤ u(a∗, θ) for all θ and u′(a, θ) = u(a, θ)
for all θ, a ̸= a∗. The following gives a condition for how the model must change when an
action is made uniformly worse:

Proposition 4. Suppose a∗ is uniformly worse in D′ relative to D. If m recommends a∗
from D′ and m′ does not recommend a∗ from D then m /∈ CD(M |s),m′ ∈ CD(M |s) =⇒
m /∈ CD′(M |s).

In words, the decisiveness of any model that recommends a∗ must decrease relative to
a model that did not recommend a∗ when a∗ is made uniformly worse. Intuitively, if a∗ is
made uniformly worse, a model that recommends a∗ provides a weaker justification toward
its recommended action than does any model recommending a different action.

Proposition 4 implies that the more predisposed the DM is to taking an action, the more
they will tend to adopt interpretations of the data that recommend that action, as opposed
to interpretations recommending other actions. Note the key distinction between this pre-
diction and that of a model selection criterion based on optimism, in which individuals
seek interpretations of the data that increase the perceived value of their chosen course of
action: a model can produce a recommendation for an action a by increasing the perceived
value of a relative to other actions, without increasing the perceived absolute value of a.
As such, a DM who is predisposed toward a will find a model decisive if it reduces the
attractiveness of competing actions, even if it does not result in a higher perceived value of
the chosen action a. This can rationalize patterns that are puzzling from the perspective of
a optimism-based criterion, such as individuals adopting interpretations that downplay the
credibility of evidence suggesting the safety of a new vaccine, or that point to the ineptitude
of a political candidate. Such models do not induce optimism but may induce a sense of
certainty over the correct course of action, if for instance the decision-maker is choosing
whether to take the vaccine or choosing who to vote for. The following example illustrates
the differences between the decisiveness criterion and selection criterion based on optimism.

Example (Wishful Thinking vs. Decisivness). Consider the following experimental re-
sults from Bastardi et al. (2011). They study a group of soon-to-be parents with similar

7To formally adapt the model to the analysis of choice probabilities, let µ(s) denote the objective
distribution of signals and let Sa

D denote the set of signals in s under which the DM chooses a in de-
cision problem D; to avoid dealing with ties in the definition of choice probabilities, assume that Am

D
and argmaxm∈M ID(m|s) are singleton sets. The probability of choosing a in decision problem D is then
Q(a,D) ≡

∑
s∈Sa

D
µ(s). My results indicate that that Q(defer,Dlow) ≤ Q(defer,Dhigh) for any set of

models M , where the inequality is strict for some M .
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priors — all believe that home care is superior to day care. However, parents face different
incentives: some intended to use home care, whereas others intended to use day care. When
shown with a study providing evidence in favor of the effectiveness of day care, parents who
intended to use home care rated the credibility of the study as low, whereas parents who
intended to use day care rated the credibility of the study as high. Can wishful thinking
explain these results?

Here, the state is given by θ = (θh, θd), where θh = 1 (θh = 0) corresponds to home care
being effective (not effective), and likewise for θd, which corresponds to the effectiveness of
day care. For simplicity, suppose that DMs believe that the quality of day care and home
care is independent. In line with the study, suppose that DMs hold common priors over
the state. DMs face the menu A = {ah, ad}, a choice between home care and day care.
Assume that the payoff from choosing each type of care is greater if that type of care is
effective:

u(ah, (θ
h = 1, θd)) > u(ah, (θ

h = 0, θd)) for all θd
u(ad, (θ

h, θd = 1)) > u(ad, (θ
h, θd = 0)) for all θh

and that the payoff from choosing a given type of care is independent of whether the
alternative is effective or not: u(ah, (θh, θd)) is constant in θd and u(ad, (θh, θd)) is constant
in θh. To rationalize the baseline heterogeneity in choice observed in the experiment,
suppose that the DMs who initially choose home care find day care uniformly more more
costly than DMs who initially choose day care.

Now suppose, as in the experiment, that the DM sees a study s providing evidence that
day care is effective. The DM entertains two models; either the study is credible (m) or
not (m∅), where pm(θd = 1|s) > pm∅(θd = 1|s) = q(θd = 1|s); assume that the study is
uninformative about the effectiveness of home care under both m and m∅.

First consider the inferences of DMs who chose day care at baseline. Under either
model, they would choose day care, but m induces lower regret associated with that choice,
and so these DMs adopt m; they rate the study as credible. Note that a model of wishful
thinking would make identical predictions in this case; an agent committed to choosing day
care would want to believe that day care is effective.

Now consider the inferences of the DMs who chose home care at baseline. According to
Proposition 4, these DMs find m less decisive relative to m∅ than do DMs who choose day
care at baseline. These DMs are therefore inclined to adopt m∅: they rate the study as
not credible. Note that wishful thinking cannot explain this finding: an agent who simply
wishes to be optimistic would have no motive to downplay the credibility of good news
regarding an option they don’t plan to choose (and would in fact avoid doing so insofar as
there are costs to warping one’s beliefs, as in Caplin and Leahy (2019)); the decisiveness
criterion, however, generates exactly this kind of motive. ▲

4.2.1 Application: Social Attributions

Consider a set of stylized facts from the psychology literature: when making inferences
about others’ dispositional traits on the basis of their behavior, individuals tend to ignore
the confounding role of situational factors in determining behavior, thus committing the
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so-called fundamental attribution error (Ross, 1977). However, there are exceptions to this
behavior: when forming inferences about ingroup members on the basis of poor behavior,
individuals commit the opposite error – they explain away the behavior as the result of
situational factors, as opposed to dispositional traits (Vonk and Konst, 1998).

The decisiveness criterion can rationalize these patterns as a result of differences in the
DM’s inferential goals across the two settings.

Example (Social Attributions). The DM is uncertain whether an actor is low-type (θl) or
high-type (θh), with uniform priors. The DM observes the actor’s behavior s, and decides
whether to interact with or avoid the actor. The payoffs of each action depend on whether
the actor is a stranger or ingroup member, corresponding to the decision problems

Dstr : Stranger
θh θl

interact v −k
avoid 0 0

Dig : Ingroup
θh θl

interact v + b −k
avoid 0 0

where v, k, b > 0. Here, the DM has a preference for ineracting with an ingroup member
as opposed to a stranger: interact is uniformly improved in Dig relative to Dstr.

The DM entertains the following models: under m, behavior is informative of the actor’s
type; underm∅, behavior is explained away by situational factors, and is thus uninformative
about type; and the true model mT = λm + (1 − λ)m∅ reflects uncertainty over whether
the actor’s behavior was the result of situational factors or their underlying type.

First consider the DM’s inferences over the stranger. Here, Corollary 1 generates a
tendency towards the fundamental attribution error: so long as IDstr(mT |s) > IDstr(m∅|s),
the DM will select m, thereby attributing the stranger’s behavior entirely to their type and
neglecting the confounding role of the situation.

In contrast, consider the DM’s inferences over the ingroup member, in the situation
where the ingroup member displayed poor behavior, i.e. pm(θh|s) < q(θh), and that for
this signal realization, m recommends that don’t interact, whereas m∅ recommends inter-
act. Here, Proposition 4 states that the DM’s stronger preference for interacting with the
ingroup member increases the decisiveness of m∅ relative to m when faced with an ingroup
member as compared to a stranger; if this difference in preferences b is sufficiently large, the
DM will select m∅, and explain away the behavior with situational factors, thus committing
a “reversal” of the fundamental attribution error. Here, the DM’s predisposition toward
interacting with the ingroup member increases the decisiveness of models that reinforce
this course of action. The decisiveness criterion also predicts an asymmetry in attribution
documented in (Vonk and Konst, 1998), where the fundamental attribution error only re-
verses for inferences over negatively-valenced behavior of ingroup members. In particular,
if the ingroup member instead exhibited positive behavior, with pm(θh|s) > q(θh), the DM
will instead find m more decisive. ▲

While the attribution patterns discussed above are consistent with a form of ingroup
bias in which the DM seeks to interpret information in a way that is favorable towards the
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ingroup, the decisiveness criterion makes additional predictions that cannot be rationalized
by such a bias. Under the decisiveness criterion, the DM seeks to explain away poor
behavior by ingroups not because she has an innate preference for holding favorable beliefs
towards the ingroup, but because this interpretation helps reduce her uncertainty over who
to interact with; as such, the DM’s inference will be sensitive to changes to the payoffs
from interacting with the ingroup member. For example, consider a decision problem D′

st

in which the cost of not interacting with the stranger is higher than in Dst — that is, don’t
interact is uniformly worse in D′

st relative to Dst.8 Proposition 4 predicts that such a shift
in payoffs can induce the DM to explain away negative behavior in D′

st just as she does in
Dig, thereby bringing inferences in both decision problems in line with each other.9

This analysis can be similarly applied to study discrimination in hiring decisions, and
in this setting, predicts a novel channel through which taste-based discrimination can drive
belief-based biases against minority applicants. The logic is analogous to the example
above — if a hiring manager incurs greater costs to hiring a minority applicant due to
discriminatory tastes, they will have a greater inclination against adopting positive inter-
pretations of the data that would recommend a decision to hire — such interpretations
lead the manager to greater decision uncertainty. This logic similarly suggests channels
for interventions in such a setting — since managers’ inferential biases are not due to the
minority status of applicants per se, but rather due to the increased costs of hiring such
applicants, the model predicts that providing minority hiring incentives can reverse this
particular inferential bias.

4.2.2 Application: Belief Polarization

Proposition 4 highlights a channel for differences in DMs’ objectives to lead to belief po-
larization.

Example (Payoff-Based Polarization). A society of DMs is uncertain over whether a
new disease is dangerous (θl) or benign (θh) with identical priors. The society contains two
Types i = 1, 2, and each chooses a level of precaution {a1, a2, ..., an} to take against the
disease, where ui(ak, θh) is decreasing in k and ui(ak, θl) is increasing in k, i.e. actions are
ordered from the lowest to highest level of precaution. Assume that u2(ak, θ) = u1(ak, θ)
for all k < n, and u2(an, θ) = u1(an, θ)−c for c > 0: that is, type-2 DMs find it more costly
to take the highest precaution level relative to type-1 DMs10.

Both types of DMs receive a signal s (for instance, news reports that disagree on the
severity of the disease, and entertain a set of models M (for instance, each model could

8For example, Dst might concern a stranger encountered in another neighborhood, whereas D′
st concerns

a stranger who happens to be the DM’s new next-door neighbor.
9Note that while a model of ingroup bias may predict that biased beliefs toward outgroups may decrease

in severity as the costs of holding such distorted beliefs increase, such a model cannot easily rationalize
why such a change in incentives would induce the DM to interpret the behavior of outgroup members in
an overly positive light, as in our example.

10This variation in costs could result from differences in “real” costs — for example, DMs employed in
essential jobs may have higher costs to staying in lockdown. This variation could also be due to “social”
costs — for example, if taking the vaccine results in the DM being viewed as a non-conformer by her social
group.
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specify the credibility of each report). Proposition 1 implies that only the models that
induce the maximum or minimum belief in θl will be adopted; let m and m denote those
models, respectively, and let pm, pm denote the beliefs those models induce in θl.

We are interested in when belief polarization occurs: that is, when one type adopts m
and the other type adopts m. To see how this can arise, notice that there exist interior
threshold beliefs p, p such that when p(θl) > p (when p(θl) < p), all types choose the highest
(lowest) level of precaution, and consider the case where m and m recommend actions at
either extreme, i.e. pm > p and pm < p. Proposition 3 implies that, relative to Type-1
DMs, Type-2 DMs — those that face higher costs of taking high precautions — find m
relatively more decisive compared to m.

In particular, when pm > p and pm < p, there exists a set of model-induced posteriors
(pm, pm) under which belief polarization occurs: Type-1 DMs adopt m, and Type-2 DMs
adopt m. Furthermore, this set is increasing in c with respect to set inclusion.11 That is,
the more the society disagrees over their objectives, the greater the scope for polarization. ▲

Like the decisiveness criterion, a model selection criterion based on optimism can also
generate belief polarization through heterogeneity in DMs’ objectives, as Caplin and Leahy
(2019) demonstrate. Note, however, that wishful thinking cannot generate polarization
in the above setting if u(a, θh) > u(a, θl) for all a: that is, if utility is higher when the
disease is benign as opposed to dangerous. Here, a DM engaged in wishful thinking has
no motive to adopt m over m — there is no reason for a wishful thinker to discredit
news that the disease is likely benign, which is strictly positive news. In many settings, a
similar logic appears to hold — for example, it seems difficult to argue that a belief that an
impending influx of immigrants will reduce employment opportunities and lower wages, or
a belief that the opposing administration will tank economy, represents optimistic thinking.
Wishful thinking similarly struggles to explain the apparent effectiveness of mudslinging
and negative ad campaigns in generating polarization. The decisiveness criterion, however,
can support the adoption of such pessimistic interpretations of the data, so long as they
guide the DM’s decision-making.

5 Choice Under the Decisiveness Criterion
In this section, I study the implications of model selection under the decisiveness criterion
on choice. Fixing a signal realization s: given a utility function u and a set of models M ,
let C(A) denote the actions recommended by the decisiveness-maximizing models in M :

C(A) =
⋃

m∈argmaxm∈M ID(m|s)

argmax
a∈A

∑
θ

u(a, θ)pm(θ|s)

in which case we say that C is represented by (u,M) given signal s. I relegate discussion of
an axiomatic characterization of C and its identification properties to Appendix A.5, and

11To see this, let vl = u(an, θl), vh = u(an, θh) and vl = u(a1, θl), vh = u(a1, θh). Under the maintained
assumption that pm > p and pm < p, Type-1 DMs adopt m and Type-2 DMs adopt m if and only if
(vh − h)(1− pm) < (vl − vl)p

m and (vh − h+ c)(1− pm) > (vl − vl − c)pm. If these conditions hold for c,
they must also hold for any c′ > c.

25



focus on a key property of C – an aversion to hedging or diversification, and also study a
key comparative static: that if the DM entertains a larger set of models, the DM will be
more averse to diversification.

Recall that a key property characterizing model selection under the informativeness
criterion is a preference for extreme models, as summarized by Propositions 1 and 2. An
immediate consequence of the DM’s preference for extreme models is that the DM exhibits
a preference for extreme actions, or an aversion to hedging.

Proposition 5. For a, a′ ∈ A, let a′′ satisfy u(a′′, θ) = λu(a, θ) + (1− λ)u(a′, θ) for some
λ ∈ (0, 1). If a′′ ∈ C(A ∪ {a′′}), then either a ∈ C(A ∪ {a′′}) or a′ ∈ C(A ∪ {a′′}).

Proposition 5 states that the DM exhibits a form of mixture aversion: she cannot
strictly prefer a hedge between two actions to both of those actions. That is, choice under
the decisiveness criterion is averse to a specific form of diversification aversion corresponding
to mixtures of acts in utility space. In Appendix A.5, I show that mixture aversion is a key
axiom in the behavioral characterization of choice under the decisiveness criterion

In addition to predicting this form of diversification aversion, the model yields the
following comparative static: if the DM entertains a larger set of models, the DM will be
more averse to a different notion of diversification, which I define below.

For the remainder of this section, restrict to a class of choice problems C represented
by the same utility u. For a menu A, let uA(θ) = maxa∈A u(a, θ) for all θ — that is, uA(θ)
gives the maximal payoff in each state among actions in A. We should expect any notion
of diversification to stipulate that a diversified action does not deliver payoffs that exceed
the maximal payoff profile of the menu, uA(θ). The following definition is more restrictive,
in that it requires that the action delivers payoffs that differ from uA(θ) by a constant.

Definition (C-Diversified Action). Say that a is a C-diversified action with respect to
A if there exists k > 0 such that u(a, θ) = uA(θ)− k for all θ. Let HA collect actions that
are C-diversified with respect to A.

One example of an action that is C-diversified action relative to A is an policy to learn
the state at a utility cost k, after which the DM chooses the ex-post optimal action from
A. The continuation payoff of this policy is given by uA(θ)− k in each state θ.

Now consider a comparative notion of diversification aversion.

Definition (Relative Diversification Aversion). Say that C ′ is more diversification-averse
than C if for any menu A, a ∈ HA, a /∈ C(A ∪ {a}) =⇒ a /∈ C ′(A ∪ {a}).

That is, C ′ is more diversification-averse than C if C ′ never chooses a C-diversified action
from a menu whenever C does not. As the proposition below demonstrates, a set inclusion
order on the model-implied posteriors the DM entertains characterizes this comparative
notion. For a set of models M , let PM |s = {pm(·|s) : m ∈ M} denote the corresponding
set of model-implied posteriors given the signal realization. Say that PM |s is interior if no
model-implied posterior in PM |s induces certainty in a state.
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Proposition 6. Suppose C, C ′ are represented by (u,M), (u,M ′), respectively, given signal
s. If co(PM |s) ⊆ co(PM ′|s), then C ′ is more diversification-averse than C. Furthermore, if
C ′ is more diversification-averse than C and PM ′|s is interior, then co(PM |s) ⊆ co(PM ′|s).

Proposition 6 is a natural consequence of Proposition 1, which states that under the
decisiveness criterion, the DM selects extreme models. If the the set of models the DM
entertains expands, she will select yet more extreme models and as a result, chose yet more
extreme actions. Proposition 6 also states that the converse is true, so long as the DM does
not entertain models that eliminate all residual uncertainty. One immediate consequence
of Proposition 6 is a comparative static on the DM’s valuation of costly but perfectly re-
vealing information.

Example (Value of Information). Consider a DM who chooses to acquire costly but per-
fectly revealing information about the state, whose utility is quasilinear and separable in
money. Consider the action space Z×W , where Z corresponds to a set of state-contingent
prizes and W ⊂ R corresponds to money. Suppose that the DM’s utility is quasilinear and
separable in money: for any action (z, w), u((z, w), θ) = v(z, θ) + w.

For any menu A, and cost of information κ < 0 let aAκ denote the action that corresponds
to the continuation payoff of acquiring perfectly revealing information about the state at
monetary cost κ. Given the quasilinearity assumption, we have u(aAκ , θ) = uA(θ) − κ: by
learning the state prior to choosing from A, the DM achieves the maximal utility achiev-
able in each state, less the cost of the information. Note that aAκ delivers precisely the
payoffs associated with a C-diversified action. Proposition 6 then implies that if the DM
entertains a larger set of models, the DM will have a lower valuation for the informa-
tion: formally, for C, C ′ represented by (u,M), (u,M ′), respectively, if co(PM) ⊆ co(PM ′),
aAκ /∈ C ′(A∪ {aAκ }) =⇒ aAκ /∈ C(A∪ {aAκ }), and furthermore if PM ′ is interior, the converse
holds. Intuitively, if the DM entertains a larger set of models, she will tend to hold more
extreme beliefs due to Proposition 1; this in turn reduces the value of information. ▲

Although Proposition 6 only characterizes a notion of relative diversification aversion
relating to C-diversified actions, the result has implications for more general notions of
diversification. In particular, consider a less restrictive notion that only stipulates that the
action delivers payoffs that do not exceed the maximal payoff profile of a menu:

Definition (Diversified Action). Say that a is a diversified action with respect to A if
u(a, θ) ≤ u(aAmax, θ) for all θ. Say that a is a strictly diversified action with respect to A if
u(a, θ) < u(aAmax, θ) for all θ.

A consequence of Proposition 6 is that so long as the set of models the DM entertains
includes sufficiently extreme (but interior) models, the DM will never choose a strictly
diversified action.

Corollary 4. If a is strictly diversified with respect to A, then there exists a set of interior
models M such that for any M ⊇ M and C represented by (u,M) given signal s, a /∈
C(A ∪ {a}).
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Example (Underdiversification). A robust finding is that households tend to hold under-
diversified portfolios — that is, they hold fewer securities than are needed to eliminate
idiosyncratic risk (see, e.g., Blume and Friend 1975, Kelly 1995, Odean 1999, Vissing-
Jorgensen 1999, Polkovnichenko 2005, and Goetzmann and Kumar 2004). A common
assumption in modeling under-diversification is that the return distributions of securities
are known, and that under-diversification results from non-standard preferences such as
cumulative prospect theory (Barberis and Huang 2005) or skewness preferences (Mitton
and Vorkink 2007). My framework highlights an additional force that can generate under-
diversification: when investors face uncertainty over the return distributions of securities,
they favor models that pick out “winners” over models that recommend diversification, as
diversification is necessarily likely to be ex-post suboptimal for any realization of returns.

To take a stylized example, consider a DM who chooses how much to allocate between
two securities i = 1, 2, which deliver monetary payoffs in R. Suppose the DM has utility
over money v : R → R; assume only that v is strictly increasing in money. Let Θ describe
the possible joint payoff realizations of two securities, and let ri,θ denote the monetary
payoff that security i delivers in state θ. For β ∈ [0, 1], let aβ denote the action that
corresponds to allocating portfolio weight β to security 1; we have u(ai, θ) = v(ri,θ) for
i = 1, 2, and u(aα, θ) = v(βr1,θ + (1 − β)r2,θ). Here, I impose one assumption on the
structure of payoffs: that for each θ, f1(θ) ̸= f2(θ) — that is, with probability 1, the two
securities deliver different returns.

Fix any interior β. Note that under these assumptions, aβ is strictly diversified with
respect to any menu containing a0 and a1. Corollary 4 then implies that so long the DM
entertains a sufficiently extreme set of models, she will choose either a0 or a1 over aβ in
such a menu.

What characterizes a “sufficiently extreme” model? Here, I give a sufficient condition.
Let Θ1 denote the states where security 1 delivers higher payoffs than security 2, and let
Θ2 denote the states where security 2 delivers higher payoffs. As the proof of Corollary 4
shows, there exists ϵ > 0 such that for any m∗ satisfying pm∗

(Θ1|s) > 1 − ϵ, the DM will
not choose the diversified action whenever m∗ ∈ M . Intuitively, a model that picks out a
security as a winner, such as the m∗ defined above, will in general be decisive: such a model
necessarily induces a belief that investing in that security will likely be ex-post optimal.
On the other hand, models that recommend diversification are in general not decisive, since
diversification will necessarily be ex-post suboptimal. ▲

6 Applications
I now discuss two additional applications of the decisiveness criterion. Whereas the pre-
ceding analysis took as primitive M , the set of models the DM entertains, in each of these
applications I extend the framework by considering two distinct forces that may shape M :
the supply of models by expert advisors, and the social exchange of models.
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6.1 Certainty in Expert Advice

Evidence suggests that individuals are drawn to advisors who provide more certain advice.
As Kahneman (2011) writes,

Experts who acknowledge the full extent of their ignorance may expect to be
replaced by more confident competitors, who are better able to gain the trust of
clients. An unbiased appreciation of uncertainty is a cornerstone of rationality
– but it is not what people and organizations want. (page 263)

Consistent with this view, research in psychology has documented that individuals have
a more favorable view toward advisors who make more certain forecasts as opposed to
moderate ones. In a stark demonstration, Price and Stone (2004) provide subjects with
probabilistic forecasts of a series of events (the likelihood that the price of a stock will
increase) made by two advisors, coupled with the realization of each event; the forecasts of
one advisor are designed to be more extreme (closer to 0% or 100%) but poorly calibrated
compared to those of the other advisor12. The majority of subjects prefer the extreme
advisor, despite the presence of outcome data indicating the superior accuracy of the mod-
erate advisor. Studies using related experimental paradigms corroborate this finding (Yates
et al., 1996; Gaertig and Simmons, 2018).

An immediate consequence of the decisiveness criterion is that individuals will be drawn
to more certain advice. To see this, consider a setting in which the DM entertains models
proposed by a set of advisors. Proposition 1 states that the DM will tend to adopt extreme
models; in a binary state case, this amounts to the DM adopting models that place the
likelihood of the event close to 0% or 100%. As Kahneman (2011) points out, this tendency
for individuals to adopt certain advice can lead to a proliferation of overly certain advice
in a competitive market for advisors, even if advisors do not inherently have incentives
to provide biased advice. Formally, consider a binary state setting with Θ = {θh, θl}. A
receiver and a set of senders (advisors) share a common prior over the state and observe a
common signal realization s. Each sender i proposes a single model mi to the receiver, who
adopts the most decisive model from M =

⋃
imi given her decision problem D (in case

of a tie, suppose the receiver adopts a random model among the decisiveness-maximizing
models in M). Each sender i knows the true model mT , and their payoffs are given by

ui(mi) =

{
v − (pmi − pmT )2 if mi is adopted
0 otherwise.

where pm ≡ pm(θh|s) denotes the posterior induced by model m. Senders earn a payoff
v if their model is adopted, and conditional on this, have incentives to provide accurate
advice. First, note that in absence of competition between senders, the sender maximizes
utility by proposing the true model mT , which in turn maximizes the utility of the receiver,
who adopts the true model. In what follows, consider the (pure strategy) Nash equilibrium

12In particular, the forecasts of the moderate advisor are constructed to be accurately calibrated, and
the forecasts of the extreme advisor are constructed by adding 15% to each forecast made by the moderate
advisor greater than 50%, and vice versa subtracting 15% from each forecast less than 50%.
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of the game in which senders simultaneously propose models. Let M∗ denote the set of
models that the receiver adopts with positive probability in such any such equilibrium.

Proposition 7. Suppose that RD(p) is non-constant in a neighborhood of p = pmT . In
any Nash equilibrium with at least two senders, for any m∗ ∈M∗,the receiver’s equilibrium
posterior belief pm∗ must be either max{0, pmT −

√
v} or min{1, pmT +

√
v}.

Proposition 7 states that at an interior equilibrium posterior belief, the model adopted
by the sender must satisfy a “zero-profit" condition – it is the most extreme model the
receiver can propose that still yields weakly positive payoffs. Competition causes receivers
to ratchet up the extremeness of their proposed models, even though receivers have no
inherent incentives to push biased models.13

Consider further the special case in which 0 < pmT −
√
v, pmT +

√
v < 1, and in which the

receiver’s decision problem D is symmetric: that is, RD(p) is symmetric around p = 1/2.
In this case, it can be shown that if pmT ̸= 1/2, the equilibrium posterior belief is unique,
and is given by

pm
∗
=

{
pmT +

√
v pmT > 1/2

pmT −
√
v pmT < 1/2

Here, the models the senders propose in equilibrium are an exaggerated version of the truth:
if the sender believes that θh is more likely than not to occur, she will propose a model
that exaggerates the likelihood of θh, and vice versa if she believes that θl is more likely
than not to occur.

6.2 Shared Models and Group Polarization

As discussed in Sections 3.2 and 4.2, the decisiveness criterion can generate belief polar-
ization in response to information — that is, receiving identical information can cause the
opinions of individuals to diverge along differences in prior beliefs and/or objectives. In this
section, I explore another source of polarization: the exchange of models, or interpretations
of the data, within a group.

Consider evidence of so-called group polarization — the phenomena in which attitudes
following group discussion are more extreme than the prior attitudes held by group mem-
bers. In one such experiment, Schkade et al. (2000) provide subjects with identical case
information and ask subjects to individually rate the severity of punishment appropriate
for the defendant. Mock juries are then formed and given the task of deliberating as a
group on the punishment severity. The key finding is that group deliberation increases the
extremity of punishment ratings: for juries in which individual punishment ratings were
high, deliberation tends to increase the group rating relative to the median individual rat-
ing within the jury, and vise versa when individual punishment ratings were low. Similar
evidence of group polarization has been documented in group judgements along a variety

13The condition that RD(p) is non-constant around pmT rules out the case in which the receiver finds
any model that would deliver weakly positive profits to the sender to be equally decisive.
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of other dimensions, such as the appropriate level of risk-taking (Myers and Lamm, 1976)
or the degree of racial prejudice (Myers and Bishop, 1976).14

What can account for these effects of group deliberation? One possibility is that deliber-
ation allows for the aggregation of private information, which can lead to group polarization
(Roux and Sobel, 2015). One tension with this explanation, as Roux and Sobel (2015) note,
is that subjects are given identical information from which to form their judgements in the
standard experimental paradigm used to study group polarization. Glaeser and Sunstein
(2009) echo this critique, noting evidence for large shifts in beliefs due to group polarization
in settings in which individuals likely have little new knowledge or information to bring to
the table, such as debates surrounding climate change or affirmative action. How can group
polarization arise in settings where individuals lack private information? Glaeser and Sun-
stein (2009) analyze a model of “credulous Bayesians" in which individuals overstate the
informational content of others’ beliefs — in their model, initial heterogeneity in opinions
reflects noise instead of differences in private information, and group polarization arises
because individuals misattribute this noise to private information. I propose an alternative
account of group polarization, in which initial heterogeneity in opinions does not reflect
differences in private information but rather in individuals’ interpretations of public infor-
mation — that is, individuals entertain different models — and that group polarization is
driven by the exchange of these interpretations.

The decisiveness criteria provides a simple explanation for why exchanging models can
result in more extreme judgments: extreme models tend to be decisive. Here, I adopt the
formal framework introduced in Schwartzstein and Sunderam (2022) to study the social
exchange of models. Consider a setting with binary states Θ = {θh, θl} (e.g. whether the
defendant committed a serious or a mild offense) over which a group of individuals share a
common prior q, a common decision problem D (e.g. deciding the severity of punishment
to inflict on the defendant), and observe a public signal s. Suppose that each individual
i initially entertains a single model mi with which to interpret the data, and after group
deliberation is exposed to the models entertained by the group, entertaining Mg ≡

⋃
imi.15

Let pmi denote individual i’s posterior belief before group deliberation, where for any model
m, pm ≡ pm(θh|s).

Consider the effects of deliberation on beliefs. First, note that group deliberation ex-
pands the set of models that each individual entertains (from {mi} to Mg); this leads to
the adoption of more extreme models (Proposition 1), and in turn, more extreme actions
(Proposition 6). Second, under the assumption that the group shares a common prior
and decision problem, group deliberation causes the beliefs of individual in the group to
converge, as each adopts the same model from Mg after deliberation. That is, exchanging
models leads individuals in a group to adopt the extreme interpretations of the data found

14Importantly, group deliberation has been found to polarize not only group judgements in these settings
but also the private judgements of individuals in the group, suggesting that group polarization is not purely
driven by distortions caused by the group decision-making process such a social desirability or the diffusion
of responsibility.

15The assumption that each individual entertains only a single model prior to group discussion is not
central to the analysis. Without affecting the analysis, one can instead assume that each individual
entertains a set of models Mi and that each individual shares Mi with the group, letting mi denote the
model that individual i finds most decisive from Mi.
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within the group.
In this manner, the exchange of models can amplify initial differences in individual

judgments between groups, generating group polarization. To see this, suppose that the
decision problem D is symmetric, and let p = minm∈MG

pm, p = maxm∈MG
pm denote the

extreme viewpoints held by members of the group prior to deliberation. Let p∗ denote the
viewpoint held by the group after deliberation. We have

p∗ =

{
p p+ p > 1

p p+ p < 1

That is, if the initial viewpoints of a group are skewed in favor of θh, the exchange of models
within that group will cause the viewpoints of the the group to be increasingly skewed in
favor of θh, and vice versa if initial viewpoints are skewed toward θl.16

Note that a key prediction of this account of group polarization is that following group
deliberation, individuals arrive at beliefs that are not only more extreme, but that also
provide greater certainty over the optimal course of action. Importantly, this latter predic-
tion need not hold under an account based on Bayesian information aggregation. Under
the Bayesian account, group polarization towards a certain conclusion is purely the con-
sequence of individuals obtaining a greater balance of evidence in favor of that conclusion
after deliberation, and in particular occurs regardless of the action implications of that con-
clusion. Therefore, as demonstrated in Appendix A.2, in certain situations the Bayesian
account predicts that group deliberation will push individuals to hold greater uncertainty
over the optimal course of action. This outlines a key distinction between the predictions of
the two accounts: under a Bayesian account, deliberation can cause individuals to become
increasingly convinced in the conclusion that the case facts are inconclusive over whether
the defendant should be convicted or acquitted, or that there is insufficient evidence to
determine whether a climate protection policy should be adopted. Under the present ac-
count, on the other hand, group deliberation systematically pushes individuals away from
such conclusions.

7 Extensions
As discussed in Section 3, the decisiveness criterion favors extreme models, which induce
extreme beliefs. However, it is not the case that decision-makers hold extreme beliefs in
every decision context – the models individuals adopt and their resulting conclusions appear
to be constrained. In the theory, these constraints are given by M , the set of models the
DM is willing to entertain. While M can be identified from choice data, as Appendix A.5,
demonstrates, the analyst must otherwise specify M in a given application. This section
discusses two approaches to how constraints on the space of models can be endogenized:
the first imposes a “cost” to deviating from a default belief, while the second imposes an
“entry condition” based on the fit of a default model.

16Analogous results hold if we relax the assumption that D is symmetric. In the general case, there
exists a p′ ∈ (0, 1) and increasing functions f1, f2, such that p∗ = p if f1(p− p′) > f2(p

′ − p) and p∗ = p if
f1(p− p′) < f2(p

′ − p)
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7.1 Cost of Deviating from Default Beliefs

Consider a constraint on model selection that incorporates a “cost” to selecting models that
induce deviations from default beliefs, following Hansen and Sargent (2001) and Caplin
and Leahy (2019). Let pd ∈ ∆(Θ) denote the DM’s default belief over outcomes. Some
candidate values of pd are the DM’s prior, the posterior belief induced by a default model, or
the posterior beliefs of a Bayesian observer. The DM adopts a model m ∈ M to maximize
decisiveness, subject to an additional cost of deviating from the default belief, given by the
relative entropy from pd to model-implied posteriors pm(·|s):

max
m∈M

ID(m)− 1

γ

∑
θ∈Θ

pm(θ|s) ln p
m(θ|s)
pd(θ)

where γ governs the weight attached to this cost: for γ → 0, the DM adopts the model
that implements the default beliefs, whereas as γ → ∞, the DM is unconstrained in her
model selection. Appendix A.3 outlines basic properties of this plausibility constraint and
draws out its implications in a binary state setting.

7.2 Entry Condition on Models

Here, I develop a constraint on model selection operating through an entry condition on the
set of models the DM entertains. Let md ∈ M denote the DM’s default model. Following
Schwartzstein and Sunderam (2021), define the fit of a model given realized signal s as
P (m|s) =

∑
θ∈Θm(s|θ)q(θ). The DM adopts a model that minimizes regret, subject to

an entry condition that the chosen model must deliver weakly higher fit than the default
model. The DM’s problem is then

min
m∈M∪{md}

∑
θ∈Θ

(u(a, θ)− uA(θ))pm(θ|s) s.t. P (m|s) ≥ P (md|s).

Proposition 1 in Schwartzstein and Sunderam (2021) shows that the above entry condi-
tion is equivalent to the constraint: P (m|s) ≥ P (md|s) if and only if pm(θ|s) ≤ q(θ)

P (md|s)
∀θ.

That is, the entry condition bounds the extent to which models are allowed to move the
DM’s beliefs away from the prior, where the bounds are tighter the better the fit of the
default model.

Let Pmd
=

{
p ∈ ∆(Θ), p(θ) ≤ q(θ)

P (md|s)
∀θ

}
denote the set of feasible posteriors given the

entry condition, and let Mmd
= {m ∈M : pm ∈ Pmd

} denote the set of models in M ∪{md}
that survive the entry condition. The DM’s model selection problem can be rewritten as

min
m∈Mmd

∑
θ∈Θ

(u(a, θ)− uA(θ))pm(θ|s).

Note that the results from Sections 3 and 4 have analogs that continue to hold in this
extension, once the entry condition on models is accounted for. Appendix A.3 analyzes a
binary state example under this plausibility constraint.
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8 Discussion
This paper presents a theory of model selection and inference based on the insight that
individuals seek decisive models, or models that provide clear decision-making guidance,
and studies the implications of this model selection criterion on inference and choice. I
conclude by discussing potential extensions and additional applications of the theory.

One limitation of the theory is that it studies model selection as a one-shot procedure.
In reality, the set of models decision-makers entertain is often in flux as they are exposed
to new models, and decision-makers may revise their working model in light of new infor-
mation. Section 6 studies one such setting, in which the set of models the decision-maker
entertains expands as a result of the social exchange of models. A more complete extension
of the theory that considers these dynamics could shed light on how the models individuals
adopt change over time, and which models tend to survive the realization of uncertainty.
An additional set of applications of the theory is to study its implications for model per-
suasion (Schwartzstein and Sunderam, 2021), in which senders influence receivers’ beliefs
by proposing models to interpret known data – under the assumption that receivers select
models that they find decisive. While Section 6 analyzes a special case of model persuasion
in which senders’ preferences are aligned with those of the receiver, a more complete anal-
ysis of model persuasion under the decisiveness criterion could shed further light on what
models we should expect decision-makers to be exposed to in the presence of persuaders.
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APPENDIX

A.1 Model Selection for Prediction Problems

As noted in Section 2, a natural approach to applying the theory in situations where the
DM does not face a particular decision problem is to assume that the DM learns from data
as if they face a prediction problem. Formally, a prediction problem is a decision problem
D = (A, u) where the actions A = ∆(Θ) consist of a belief report. For a prediction problem
D = (∆(θ), u), refer to u as a scoring rule. Say that a scoring rule u, as well as its associ-
ated decision problem D, is proper if for all p, q ∈ ∆(Θ),

∑
θ u(p, θ)p(θ) ≥

∑
θ u(q, θ)p(θ);

that is, a prediction problem is proper if the DM maximizes expected utility by truthfully
reporting their beliefs.

Example (Proper Prediction Problems).

Quadratic Loss. Suppose Θ = {0, 1}. In this case, we can represent A = ∆(Θ) with
the probability that θ = 1; consider the scoring rule u(a, θ) = (a − θ)2. It is well known
that this scoring rule is proper. The decisiveness of a model m in this prediction problem
is given by

ID(m|s) = −pm(1− pm)

where pm ≡ pm(θ = 1|s). For the prediction problem associated with quadratic loss, the
DM adopts the model that minimizes her posterior variance.

Logarthimic Loss. Consider the scoring rule u(p, θ) = − log p(θ). This scoring rule is
proper, and the decisiveness of a model m in this prediction problem is

ID(m|s) = −
∑
θ

pm(θ|s) ln(pm(θ|s))

That is, logarithmic loss leads the DM to adopt the model that minimizes posterior entropy.
▲

Here, I characterize model selection under the decisiveness criterion in the case where
D is a proper prediction problem. In particular, I ask whether the restriction to proper
prediction problems imposes further properties on model selection beyond the necessary
and sufficient properties given in Proposition 2. The answer turns out to be negative, as
the result below states.

Proposition 8. A model choice correspondence C satisfies

1. Sen’s α, β: If m ∈ M ⊆ M ′ and m ∈ C(M ′), then m ∈ C(M). Also, if m,m′ ∈
CD(M), M ⊆M ′ and m′ ∈ C(M ′) then m ∈ C(M ′).

2. Continuity: For all m ∈ M, {m′ ∈ M : m′ ∈ C({m,m′})} and {m′ ∈ M : m ∈
C({m,m′})} are closed.
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3. Scale Invariance: For any m ∈ M, if m′ satisfies m′(s|θ) = λm(s|θ) ∀ θ, λ > 0, then
C({m,m′}) = {m,m′}.

4. Extremeness: For m,m′ ∈ M , if m,m′ /∈ C(M), then for any λ ∈ (0, 1), λm + (1 −
λ)m′ ̸∈ C(M).

5. Certainty Preference: If m(s|θ) = 1 for any θ ∈ Θ and m ∈M , then m ∈ C(M).

if and only if there exists a proper prediction problem D and signal s such that C(M) =
CD(M |s) for all M ⊆ M.

In other words, the class of proper prediction problems is sufficiently rich so as not to
rule out any patterns of model selection that would obtain under the decisiveness criterion.

A.2 Shared Models and Group Polarization: Details

Here, I discuss an example illustrating that Bayesian information aggregation need not
result in greater certainty over the state.

Example (Diagnositicity of Evidence). Suppose that a group of N individuals have a
common, uniform prior over the state Θ = {θl, θh} (e.g. not guilty vs. guilty) and receive
a public signal sh ∈ {sh, sl}. Individuals are uncertain over how to interpret sh, and in
particular, entertain two different models that describe the data-generating process: under
m1, the signal is uninformative over the state, and under m2, the signal provides evidence
towards θh:

m1(sh|θh) = 1−m1(sh|θh) = q > 1/2

m2(sh|θh) = m2(sh|θl) = 1/2

Suppose that individuals share a common, uniform prior over the two models, and each
individual i obtains a private iid signal ψi ∈ {1, 2} over the model space, where

Pr(ψi = 1|m1) = Pr(ψi = 2|m2) = p > 1/2

where the ψi are also independent of θ and s. It follows that if a greater number of
individuals in the group receive the signal ψi = 2 than receive ψi = 1, then information
aggregation causes individuals to become increasingly certain that m2 describes the data-
generating process, and therefore increasingly uncertain over the state. ▲

A.3 Plausibility Constraints on Model Selection: Details

Cost of Deviating: Properties. Denoting uA(θ) = maxa∈A u(a, θ) as the maximum
payoff achievable for state θ, the DM’s problem can be re-written as

V = max
a∈A,p∈∆(Θ)

∑
θ∈Θ

(
u(a, θ)− uA(θ)

)
p(θ)− 1

γ

∑
θ∈Θ

p(θ) ln
p(θ)

pd(θ)
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Note that the similarity between this formulation and that of Caplin and Leahy (2019): it
is identical to their model of wishful thinking, except the DM’s utility function is replaced
by a normalized utility function v(a, θ) = u(a, θ)−uA(θ), which normalizes the payoff from
taking an action in state θ by the maximal utility attainable in θ. The model is as if the
agent seeks to maximize anticipatory normalized utility, given a cost of deviating from the
default belief.

Fixing an action a, first order conditions for p imply that an interior solution p must
satisfy

p(θ) =
exp

[
γ(u(a, θ)− uA(θ))

]
pd(θ)∑

θ′∈Θ exp
[
γ(u(a, θ′)− uA(θ′))

]
pd(θ′)

This expression tells us that the DM’s posterior will be a “tilting” of their default posterior
that puts less weight on states associated with higher regret given the chosen action a.
Substituting the above expression into DM’s problem yields

V = max
a∈A

∑
θ∈Θ

pd(θ)
exp(γu(a, θ))

exp(γuA(θ))

giving a description of the DM’s choice. To interpret this expression, note that the return
to taking an action that pays off in state θ is increasing in pd(θ), the DM’s default belief
in θ, but also is also decreasing in uA(θ), the maximal payoff achievable in state θ. The
intuition for the latter effect is as follows: all else equal, as the maximal payoff associated
with state θ increases, the residual uncertainty associated with that state increases, and
so the DM will tend to select models that induce lower posteriors over θ. Note that this
comparative static echoes Proposition 3.

Example (Binary State Example: Cost of Deviating). The DM wants to learn whether a
fund manager is high-skilled (θh) or low-skilled (θl), and initially believes either possibility
is equally likely: q(θh) = 1/2. The DM’s signal is the return of the manager’s fund, which
is either high or low: {rh, rl}. The DM’s decision problem is given by

θh θl
hire v −k
don’t hire 0 0

Suppose that k > v, so that given the DM’s prior belief, the DM chooses not to hire the
manager. Suppose further that the DM’s default belief is pd(θh) = 1/2, which corresponds
to a belief that returns are uninformative about manager skill. Consider the case that a
low return is realized. Applying the expression above, the optimal model-implied posterior
will be

pm(θh) =
1

1 + exp(γv)

Note that this model-implied posterior pm(θh) is weakly lower than 1/2, and for γ → ∞,
pm(θh) → 0, corresponding to the case where the DM faces no costs of deviating from the
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default belief, whereas for γ → 0, pm(θh) → 1/2, the default belief. ▲

Example (Binary State Example: Entry Condition on Models). Consider again the fund
manager setting. The DM wants to learn whether the fund manager is high-skilled (θh) or
low-skilled (θl), and holds priors q(θh) = q. The DM’s signal is the return of the manager’s
fund, which is either high or low: {rh, rl}. The DM’s decision problem is again given by

θh θl
hire v −k
don’t hire 0 0

where that k > v, so that given the DM’s prior belief, the DM chooses not to hire the
manager. Suppose that the DM’s default model md satisfies md(rl|θl) = md(rl|θh) = ϕ.
Suppose again that a low return is realized.

Which models survive the entry condition? Note that only models that satisfy pm(θh) ∈
[1− (1− q)/ϕ, q/ϕ] will have greater fit than the default model. In particular, consider the
case where ϕ = 1: here, the default model states that the realized signal of a low return
was inevitable, regardless of the skill of the manager. in this case, the only model that
survives the entry condition is the default model itself. On the other hand, as ϕ → 0 —
that is, as the realized signal becomes increasingly unlikely under the default model — the
set of surviving models expands to the entire model space. ▲

A.4 Ex-Ante Decisiveness

Recall that in the basic framework, model selection occurs ex-post: the DM evaluates each
model based on its decisiveness given the signal realization. One might instead imagine an
account in which the DM evaluates each model according to an ex-ante notion of decisive-
ness, and adopts a model prior to the signal realization. Here, I provide a formulation of
an ex-ante notion of decisiveness, and compare its properties to the ex-post formulation.

As in the basic framework, the DM entertains a set of models M and faces a decision
problem D. Letting pm(s) =

∑
θm(s|θ)q(θ) denote the likelihood of signal s under model

m, let

IED (m) =
∑
s

ID(m|s)pm(s)

denote the expected decisiveness of m prior to the signal realization. Consider a DM who,
prior to the realization of the signal, selects a model from M that maximizes expected
decisiveness; refer to this account of model selection as the ex-ante criterion and the account
developed in Section 2 as the ex-post criterion, and let CE

D (M) = argmaxm∈M IED (m) denote
the models the DM adopts under the ex-ante criterion.

A.4.1 Properties of Model Selection under Ex-Ante Decisiveness

Extremeness. Recall that a key-property of the ex-post criterion is that it favors extreme
models: in particular, as Proposition 1 implies, if m = λm′ + (1 − λ)m′′, then for any s,
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ID(m|s) ≤ max{ID(m′|s), ID(m′′|s)}. The ex-ante criterion satisfies an analogous property:
if m = λm′ + (1− λ)m′′, then IED (m) ≤ max{IED (m′), IED (m

′′)}.

Proposition 9. For m,m′ ∈ M , if m,m′ /∈ CE
D (M), then for any λ ∈ (0, 1), λm + (1 −

λ)m′ /∈ CE
D (M).

The intuition for this extremeness result is similar to that of the ex-ante case: the com-
posite model m′′ corresponds to a case where the DM is uncertain over how to interpret
the information, which results in lower average decisiveness.

Overprecision and Confirmation Bias. Recall that in the ex-post case, the extremeness
property generates a form of overprecision. In particular, letting m∅ denote an uninfor-
mative model, Corollary 1 states that if ID(m∅|s) < ID(m|s), then for any m′ satisfying
m = λm′ + (1 − λ)m∅, it must be that ID(m′|s) ≥ ID(m|s). That is, under the ex-post
criterion, if the DM finds a model m more decisive than her prior for a given signal real-
ization, she will find a model that overstates the informativeness of m yet more decisive.
The ex-ante criterion also generates overprecision, but does so unconditionally : for any
m′ satisfying m = λm′ + (1 − λ)m∅, we have IED (m′) ≥ IED (m): that is, the DM exhibits
overprecision irrespective her prior.

Proposition 10. For any m satisfying λm + (1 − λ)m∅ = mT for some λ ∈ (0, 1),
IED (m) ≥ IED (mT ).

In fact, the ex-ante criterion produces a more general form of overprecision: if m′

dominates m in the Blackwell order, then IED (m′) ≥ IED (m) — that is, the ex-ante criterion
respects the Blackwell order.17

An immediate consequence of the fact that overprecision holds unconditionally in the
ex-ante case is that, unlike ex-post decisiveness, model selection under ex-ante decisiveness
does not generate confirmation bias. Recall that in the ex-post case, Corollary 2 states that
if the DM’s prior is sufficiently concentrated in one state, the DM will find an uninformative
model more decisive than a model providing evidence against that state. In contrast, the
ex-ante decisiveness criterion predicts that the DM will never find an uninformative model
more decisive than an informative model, regardless of her priors.

A.4.2 Selection as a Function of Objectives under Ex-Ante Decisiveness

Maximal Payoff Improvements. Selection under the ex-post criterion exhibits the fol-
lowing comparative static, formalized in Proposition 3: adding an action to the menu that
increases the maximal payoff associated with a set of states but is ultimately not chosen can
only result in the DM adopting a model that places lower likelihood on those states. Note
that one implication of this property is that the ex-ante model violates IIA – the addition
of an unchosen action can induce a change in the model the DM adopts, and in turn lead
to a change in the action taken by the DM. The ex-ante model, on the other hand, does not
allow for such violations of IIA – the addition of unchosen actions cannot induce a change in

17It can be shown that if m = λm′ + (1− λ)m∅, then m is a garbling of m′ and so is dominated by m′

in the Blackwell order.
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model selection. This precludes an analog of Proposition 3 from holding in the ex-ante case.

Reductions in Action Value. As formalized in Proposition 3, in the ex-post case,
reducing the payoffs of an action a recommended by model m reduces the decisiveness of m
relative to any model that does not recommend a. A similar comparative static holds for
the ex-ante model. In particular, suppose model m recommends action a for some signal
realization; it must be that reducing the payoffs of a reduces the decisiveness of m relative
to any model that does not recommend a for any signal realization.

Formally, consider two decision problems D = (A, u),D′ = (A, u′). Say that action a∗ ∈
A is uniformly worse in D′ relative to D if u′(a∗, θ) ≤ u(a∗, θ) for all θ and u′(a, θ) = u(a, θ)
for all θ, a ̸= a∗.

Proposition 11. Suppose a∗ is uniformly worse in D′ relative to D. If m ∈M recommends
a∗ from D′ for some s ∈ S and m′ ∈ CE

D (M) does not recommend a∗ from D for any s ∈ S,
then m /∈ CE

D (M) =⇒ m /∈ CE
D′(M).

In words, both versions of the model share the following feature: the more predisposed
the DM is to taking an action, the more they will tend to adopt interpretations of the data
that recommend that action, as opposed to interpretations recommending other actions.

Relationship to Optimism. Recall that ex-post decisiveness delivers distinct predictions
from a model selection criterion based on optimism: in particular, the ex-post decisiveness
of a model is evaluated only based on its implications for the relative, as opposed to abso-
lute, values of actions – a model that induces pessimistic beliefs can still be decisive, so long
as it produces a strong recommendation toward one course of action over its alternatives.

This distinction no longer holds in the ex-ante case, however. The ranking over models
induced by ex-ante decisiveness is equivalent to a model selection criteria based on ex-ante
optimism. To see this, note that the expression for expected decisiveness, for D = (A, u),
can be expressed as

IED (m) =
∑
s

[
max
a∈A

∑
θ

u(a.θ)pm(θ|s)

]
pm(s)−

∑
θ

max
a′∈A

u(a′, θ)q(θ)

As the second term on does not depend on m, selecting the model that maximizes ex-
ante decisiveness-maximizing model is equivalent to selecting the model that maximizes
expected utility.

A.5 Behavioral Characterization and Identification Results

A key primitive in the framework is the set of models the DM entertains, M . In many
situations, however, the set of models the DM entertains is difficult or impossible to directly
observe. This raises the following questions: if we are unwilling to make a-priori restrictions
on M , does the theory nevertheless make meaningful restrictions on choice, and can M be
deduced from choice data?

I take up both of these questions, working in an extended environment that includes
objective lotteries over outcomes following Anscombe and Aumann (1963). These results
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rely on techniques similar to those in Stoye (2011), which characterizes min-max regret
choice correspondences, to provide characterization and identification results for the theory.

A.5.1 Extending the Environment

We extend the DM’s decision environment as follows. There is a set of prizes Z. The DM
chooses between acts X ≡ ∆(Z)Θ, where each act f ∈ X is a mapping from states to finite
objective lotteries over prizes. Let A denote the collection of finite subsets of X. Take as
data the choice correspondence C : A ⇒ X, which satisfies C(A) ⊆ A for all A ∈ A.

Because multiple models can induce the same posterior belief for a given signal real-
ization, it will not in general be possible to identify the set of models the DM entertains;
the representation we consider will therefore focus on the set of posteriors P induced by
the models the DM entertains. Under the maintained assumptions in Section 2, this set of
posteriors will be a closed subset of ∆(Θ). Let P denote the collection of all closed subsets
of ∆(Θ). Let U denote the set of utility functions from Z to R, and extend these to ∆(Z)
by taking expectations18.

Definition (Decisiveness-Maximizing Representation). A choice correspondence C has
a decisiveness-maximizing representation if there exists (u, P ) ∈ U × P such that for all
A ∈ A,

C(A) =
⋃

p∈I(P |A)

argmax
f∈A

∑
θ∈Θ

u(f(θ))p(θ)

where

I(P |A) = argmax
p∈P

{
max
f∈A

∑
θ∈Θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

}
.

If the above holds, say that (u, P ) represents C.

In words, if C is represented by a utility function and a set of model-implied posteriors,
C chooses the acts that maximizes expected utility with respect to a posterior that maxi-
mizes decisiveness. Now, introduce two assumptions that will be needed for identification:

Assumption 1: There exists z, z′ ∈ Z such that u(z) > u(z′).

Assumption 2: P does not contain δθ for any θ ∈ Θ.

Assumption 1 amounts to a non-triviality assumption that ensures that the DM is
not indifferent between all acts. Assumption 2 is substantive, and rules out models that
induce certainty in a state. Assumptions 1 and 2 are crucial for the identification result
that follows, but partial identification of the set of extreme models is still possible when
Assumption 2 is relaxed, as I discuss below.

18In particular, for u : Z → R, for each q ∈ ∆(Z) let u(q) =
∑

z∈Z u(z)q(z).
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A.5.2 Relationship to Min-Max Regret Models

This model has a tight relationship with the min-max regret model, characterized in Hayashi
(2008) and subsequently Stoye (2011), which has the representation

C(A) = argmin
f∈A

max
p∈P

∑
θ∈Θ

[
max
f ′∈A

u(f ′(θ))− u(f(θ))

]
p(θ)

Here, the DM chooses to minimize the worst-case expected regret, taken with respect to
the set of beliefs P . The decisiveness-maximizing representation is equivalent to a min-
min regret model, where the DM chooses to minimize the best-case expected regret. As
such, my characterization result parallels the axiomatization in Stoye, with the appropriate
adjustment in axioms to replace the max operator with a min operator. In particular, as I
discuss below, while the min-max model is characterized by a preference for hedging, my
model is instead characterized by an aversion to hedging.

A.5.3 Characterization Result

With slight of notation, we will let a, b, ... denote both the objective lottery in ∆(Z) and
the corresponding constant act. For θ ∈ Θ, let Cθ denote the ex-post choice function
defined by Cθ(A) = C({f(θ) : f ∈ A}) for all A ∈ A. Say that f improves on A if
there exists some θ for which f = Cθ(A ∪ {f}), and say that menu A′ improves on A if
there exists some f ∈ A′ that improves on A. Also, for menu A, act f , λ ∈ [0, 1] let
λA+ (1− λ)f = {λf ′ + (1− λ)f : f ′ ∈ A}. Consider the following axioms:

Axiom 1 (Independence of Non-Improving Alternatives (INA)). If B does not improve
on A, then C(A ∪B) ∩ A ∈ {C(A),∅}.

Axiom 2 (Independence of State-Improving Alternatives (ISA)). For a, b ∈ ∆(Z), λ ∈
(0, 1): if A does not improve λB + (1 − λ)a nor λB + (1 − λ)b, and additionally C(A ∪
λB + (1− λ)a)∩A ̸= ∅ and C(A∪ λB + (1− λ)b)∩A ̸= ∅, then C(A∪ λB + (1− λ)a) =
C(A ∪ λB + (1− λ)b).

Axiom 3 (Monotonicity). If f ′ ∈ Cθ(f, f ′) for all θ, then f ∈ C(A ∪ {f}) =⇒ f ′ ∈
C(A ∪ {f ′}).

Axiom 4 (Mixture Continuity). For f, g, h ∈ X and A ∈ A with h ∈ A, the sets

{α ∈ [0, 1] : αf + (1− α)g ∈ C({αf + (1− α)g} ∪ A)}
{α ∈ [0, 1] : h ∈ C({αf + (1− α)g} ∪ A)}

are closed.

Axiom 5 (Mixture Independence). For λ ∈ (0, 1), g ∈ X, f ∈ C(A) =⇒ λf + (1− λ)g ∈
C(λA+ (1− λ)g).
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Axiom 6 (Mixture Aversion). For f, g ∈ X,λ ∈ (0, 1) s.t. {f, g} ⊆ C(A), f ∈ C(A ∪
{λf + (1− λ)g}).

Axiom 7 (Non-Triviality). There exists z, z′ ∈ Z such that C({z, z′}) = z.

Axiom 8 (No Certainty). There exists f ∈ X, A ∈ A, such that f ̸∈ Cθ(A) for all θ,
and f ∈ C(A).

Axioms 1 and 2 together are a weakening of the standard IIA axioms. This weakening
reflects the fact that model selection under the decisiveness criterion, and therefore the
evaluation of a given action, depends on the decision problem that the DM faces; Axiom
1 places testable restrictions on the nature of this dependence. In particular, INA states
that choice satisfies an IIA property with respect to acts that do not improve the maximal
payoff profile — that is, only the addition of acts that improve the maximal payoff profile
can induce a change in choice among existing alternatives. On the other hand, ISA states
that scaling the payoffs of irrelevant maximal actions cannot induce preference reversals
among non-maximal actions.

Example (Violation of INA). Suppose the prize space contains two elements, zh, zl, where
C({zh, zl}) = zh. Identify each act by the probability it places on prize zh in each state.
Suppose we have the acts f, g, h with

θ1 θ2
f 1 0
g 0 1
h 0 0.9

and suppose that C({f, g}) = f and C({f, g, h}) = g. Choice in this example exhibits the
asymmetric dominance effect — the addition of h, which is dominated by g but not f ,
causes the DM to switch from f to g. ISA rules out such forms of menu dependence. ▲

Axiom 3 imposes that choice obeys state-wise dominance. Axiom 4 is a technical condi-
tion, and Axiom 7 reflects the assumption that the set of acts is non-trivial, whereas Axiom
8 reflects the assumption that the set of models the DM entertains precludes models that
induce complete certainty.

Axiom 5 is an analog of the Independence axiom. It states that choice from a menu
is invariant to mixing all acts in the menu with another act. It jointly captures two prop-
erties of the theory. The first property concerns choice when the DM is restricted to a
single model. In this case, the theory collapses to a case of subjective expected utility
(SEU), where the DM evaluates prospects according to a fixed set of subjective beliefs (a
fixed model) – in SEU, Independence must hold. The second property is a restriction on
how model selection can depend on the DM’s decision problem. In particular, since the
decisiveness of a model depends only on statewise differences between the utility levels of
alternatives in the menu, shifting the utility levels that all acts deliver in a state by the
same constant cannot induce a change in which model the DM selects. Since in the the-
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ory, choice for a fixed model satisfies Independence, and model selection also is invariant
to such mixing operations performed on DM’s decision problem, choice itself must satisfy
Independence.

Example (Violation of Mixture Independence). Suppose again that Z = {zh, zl} with
C({zh, zl}) = zh, and again identify each act by the probability it places on prize zh in each
state. Suppose we have the acts f, g, f ′, g′

θ1 θ2
f 0.6 0.4
g 0.8 0.2

θ1 θ2
f ′ 0.3 0.7
g′ 0.4 0.6

and suppose C({f, g}) = g and C({f ′, g′}) = f ′. Choice in this example can be rationalized
by a model of wishful thinking — the DM places higher beliefs in the state under which she
can obtain higher payoffs — θ1 when the menu is {f, g} and θ2 when the menu is {f ′, g′}.
Note however, that f ′ = 1

2
f + 1

2
h, g′ = 1

2
g+ 1

2
h, where h satisfies h(θ1) = zl, h(θ2) = zh, and

so this choice pattern violates Mixture Independence. Note that although that the above
mixing operation changes the payoff levels that acts deliver in either state, the payoff dif-
ferences within states are preserved; it is the latter consideration, rather than the former,
that determines the decisiveness of a given model. ▲.

Axiom 6 imposes that choice satisfies an extremeness property: mixing between two
acts cannot result in an act that “improves" on those acts. Axiom 6 directly corresponds
to the key extremeness property of the decisiveness criterion formalized in Proposition 1 —
the DM’s tendency to select extreme models directly translates into a tendency to choose
extreme actions – or alternatively a tendency against choosing “diversified" actions or hedg-
ing. Note the relationship between Axiom 6 and the Uncertainty Aversion axiom in Gilboa
& Schmeidler’s (1986) characterization of the Min-max Expected Utility (MEU) model,
which embodies the opposite preference towards diversification: if the DM is indifferent
between two acts, she must prefer a mixture of those acts to either act. As one might
expect, documented choice patterns reflecting ambiguity aversion, which MEU was formal-
ized to rationalize, are inconsistent with Axiom 6, and therefore cannot be rationalized by
the theory.

Example (Violation of Mixture Aversion). As before, let Z = {zh, zl} with C({zh, zl}) = zh,
and identify each act by the probability it places on prize zh in each state. Suppose we
have the acts f, g, h

θ1 θ2
f 1 0
g 0 1
h 0.5 0.5

with C({f, g}) = {f, g} but C({f, g, h}) = h. This choice pattern corresponds to a experi-
mental findings for a variant of the classic Ellsberg paradox (Becker and Brownson 1964)
in which h corresponds to betting on a black ball being drawn from an urn known to have
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50 black and 50 red balls, and f and g correspond to betting on a black and red ball,
respectively, being drawn from an urn with an unknown mix of black and red balls. Note
that such choice patterns are ruled out by Axiom 6. ▲

Although Axiom 6 is at odds with an established body of evidence for ambiguity-averse
preferences in choice settings similar in structure to the example above, there is also a
body of evidence for mixture-averse preferences consistent with Axiom 6. For example,
Heath and Tversky (1991) demonstrate that aversion to ambiguity reverses when subjects
bet in domains in which they have high perceived expertise. In particular, when subjects
self-identify as having expertise regarding events for which objective probabilities are un-
available (e.g. outcomes of elections or football matches), they prefer to bet on those events
over events with known probabilities, even when the former outcomes are judged by sub-
jects to be equiprobable — behavior which violates Uncertainty Aversion but is consistent
with Axiom 6. Viewed through the lens of the theory, subjects who have greater expertise
in a given domain may be able to entertain a greater range of arguments (models) for or
against any given outcome, which would rationalize the documented mixture-averse be-
havior. Outside of stylized lab experiments, evidence for behavior consistent with mixture
aversion abounds: it is well known that investors tend to hold underdiversified portfolios
consisting of too few securities to eliminate idiosyncratic risk (e.g. Mitton and Vorkink
2007) and also tend to exhibit home bias, concentrating their ownership in domestic stocks
(French and Poterba 1991). As Section 5 demonstrates, in this model, such behavior can
be rationalized as a consequence of uncertainty over the payoff distributions of securities.

The following result states that choice in the model is characterized by Axioms 1–6.
Recall that Proposition 1 states that for any decision problem, only extreme models can
strictly minimize decisiveness. This implies that in general, only identification of the set
of extreme model-induced posteriors from choice data will be possible. The result shows
that the set of extreme model-induced posteriors are indeed identified, if we additionally
assume Axioms 7 and 8 – that is, if Assumptions 1 and 2 are satisfied.

Theorem 1. C satisfies Axioms 1–6 if and only if it has a decisiveness-maximizing rep-
resentation (u, P ). C additionally satisfies Axioms 7 and 8 if and only if u and P satisfy
Assumptions 1 and 2, respectively, and for any (u′, P ′) representing C, there exist constants
α > 0, β such that u′ = αu+ β, and ext(P ′) = ext(P ).

The proof of the characterization result in Theorem 1 parallels that of the min-max
model established in Stoye (2011), which shows that Axioms 1–5, as well as an Uncertainty
Aversion axiom, characterize the min-max regret model. Note, however, that while the
extreme set of model-implied posteriors is identified in min-max regret model if Axiom 7
(Non-Triviality) is assumed, the same is not the case in my model. Intuitively, if the DM
entertains a model-induced posterior p ∈ P that places certainty in a state θ – that is, if
Assumption 2 does not hold – the DM will never select (outside of cases of indifference) a
model that does not place certainty in any state. This precludes the identification of the
full set of extreme models in the case where Assumption 2 does not hold, and so the No
Certainty axiom, which guarantees that Assumption 2 holds – is required for identification.
Below I provide a partial identification result in a setting where Assumption 2 is relaxed.
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For a set of model-induced posteriors P , let ct(P ) = {p ∈ P : p = δθ for some θ ∈ Θ}
denote the set of certainty-inducing posteriors. The following result states that when ct(P )
is non-empty it can be identified from choice data, and moreover that choice data identifies
whether or not ct(P ) is non-empty.

Theorem 2. C satisfies Axioms 1–7 if and only if it has a decisiveness maximizing rep-
resentation (u, P ), where u satisfies Assumption 1. Also, for any (u′, P ′) representing C,
there exists constants α > 0, β such that u = αu′ + β, and ct(P ) = ct(P ′).

Note that in the case where the data identifies that ct(P ) = ∅, Assumption 2 holds
and so we can use the identification result in Theorem 1 to identify the full set of extreme
models from choice data.

A.5.4 Relative Diversification Aversion

Here, I state a comparative static that corresponds to Proposition 6 in the main text,
which states that if the DM entertains a larger set of models, the DM will be more averse
to diversification. Consider a family of choice functions {Ck}k∈K that have a decisiveness-
maximizing representation, and that share the same utility over prizes. It can be shown
that if C has a decisiveness-maximizing representation, choice over menus of constant acts
can be described by a preference relation; let ⪰∗ denote the preference relation that de-
scribes choice over constant acts for members of {Ck}k∈K . For a menu A, let fA

max denote
any act that satisfies fA

max(θ) ∈ {f(θ) : f ∈ A, f(θ) ⪰∗ g(θ)∀ g ∈ A} — that is, fA
max

delivers the most preferred outcome in each state among acts in A.

Definition (C-Diversified Act). Say that h is a C-diversified act with respect to A if
there exists lotteries over prizes q, q ∈ ∆(Z) satisfying q ⪰∗ q such that 1

2
fA
max(θ) +

1
2
q ∼∗

1
2
h(θ) + 1

2
q for all θ. Let HA collect acts that are C-diversified with respect to A.

As in the definition of a C-defined action in the main text, a C-diversified act has the
following interpretation: to construct a C-diversified act, one takes the maximal payoff
achievable in each state and reduces that payoff by a constant.

Definition 3 (Relative Diversification Aversion). Say that C ′ is more diversification-averse
than C if for any A ∈ A, h ∈ HA, h /∈ C(A ∪ {h}) =⇒ h /∈ C ′(A ∪ {h}).

That is, C ′ is more diversification-averse than C if C ′ never chooses a diversified act from
a menu whenever C does not. I now state the analog of Proposition 6 in the main text.

Theorem 3. 3 Suppose C, C ′ are represented by (u, P ), (u, P ′), respectively. If co(P ) ⊆
co(P ′), then C ′ is more diversification-averse than C. Furthermore, if C ′ is more diversification-
averse than C and P ′ satisfies Assumption 2, then co(P ) ⊆ co(P ′).

A.6 Proofs: Propositions in the Main Text

Proof of Proposition 1. Fix some signal s; in what follows I drop the dependence
on s in the notation, where appropriate. Since maxa

∑
y u(a, θ)p(θ) is convex in p and
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∑
y maxa′ u(a

′, θ)p(θ) is linear in p, RD is concave in p. Bayes’ rule implies that for all
α ∈ (0, 1), there exists λ ∈ (0, 1) such that pλm+(1−λ)m′

= αpm + (1 − α)pm
′ , and so ID is

convex. Therefore, ID(λm+(1−λ)m′) ≤ max{ID(m), ID(m
′)}, and som,m′ /∈ CD(M) =⇒

λm+ (1− λ)m′ /∈ CD(M), thus establishing the first part of the proposition.

Now additionally suppose that Am, Am′ are disjoint. Toward a contradiction, suppose
that λm+(1−λ)m′ ∈ CD(M) for λ ∈ (0, 1). Bayes’ rule implies that there exists α ∈ (0, 1)
s.t. αpm + (1 − α)pm

′
= pλm+(1−λ)m′ . We then have RD(p

λm+(1−λ)m′
) ≤ αRD(p

m) + (1 −
α)RD(p

m′
). Fix a ∈ Am

D and a′ ∈ Am′
D . The preceding inequality implies that for any

a′′ ∈ A
λm+(1−λ)m′

D ,∑
θ

u(a′′, θ)(αpm(θ) + (1− α)pm
′
(θ)) ≥ α

∑
θ

u(a, θ)pm(θ) + (1− α)
∑
θ

u(a, θ)pm
′
(θ)

Since
∑

θ u(a
′′, θ)pm(θ) ≤

∑
θ u(a, θ)p

m(θ) and
∑

θ u(a
′′, θ)pm

′
(θ) ≤

∑
θ u(a

′, θ)pm
′
(θ), the

above implies that
∑

θ u(a
′′, θ)pm(θ) =

∑
θ u(a, θ)p

m(θ) and
∑

θ u(a
′′, θ)pm

′
(θ) =

∑
θ u(a

′, θ)pm
′
(θ),

which in turn implies that a′′ ∈ Am
D , A

m′
D , a contradiction.

□

Proof of Proposition 2. Fix some signal s; in what follows I drop the dependence
on s in the notation, where appropriate. Proposition 1 shows necessity of Extremeness;
necessity of Sen’s α, β, Certainty Preference, and Scale Invariance are immediate from the
definition of the regret criterion.

To see necessity of Continuity, let E ⊂ Rn denote a convex, compact superset of ∆(Θ).
Consider H̃ : E → R defined by H̃(p) = maxa∈A

{∑
θ u(a, θ)p(θ)−

∑
p maxa′∈A u(a

′, θ)p(θ)
}

.

Since H̃ is the maximum over a family of affine functions on a convex, compact set, H̃ is
convex. By construction H̃ is bounded from above by 0, and is bounded from below.
So H̃ is a proper convex function and is therefore continuous on the relative interior of
E,19 which in turn implies that H, the restriction of H̃ to ∆(Θ), is continuous. There-
fore, RD(p) = −H(p) is continuous, and so ID(m) = RD(p

m) is continuous since the map
m→ pm is continuous.

To show sufficiency, note that Sen’s α, β implies that there is a preference relation ⪰ where
CD(M) = {m ∈M : m ⪰ m′ ∀m′ ∈M}. Since M is a closed, bounded subset of Rn, Con-
tinuity implies that ⪰ can be represented by a continuous utility function V : M → R. Let
R̃ = −V . Since C satisfies Extremeness, R̃ must be concave. Since C satisfies Certainty
Preference, R̃ must attain its minimum value at any m such that pm = δθ for any θ ∈ Θ;
normalize this minimum value to 0. Scale Invariance implies that R̃(m) = R̃(m′) whenever
pm = pm

′ , and so the function R : ∆(Θ) → R satisfying R(pm) = R̃(m) is well defined.

Bayes’ rule implies that for all λ ∈ (0, 1), there exists α ∈ (0, 1) such that λpm + (1 −
λ)pm

′
= pαm+(1−α)m′ , and so R inherits concavity from R̃, and for any θ ∈ Θ, R(δθ) = 0.

19Theorem 10.4 in Rockafellar, “Convex Analysis"
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By Theorem 2 of Frankel and Kamenica (2019), there exists a set of actions A and utility
function u : A×Θ → R such that R(p) =

∑
θ∈Θ p(θ)maxa u(a, θ)−maxa

∑
θ∈Θ p(θ)u(a, θ).

□

Proof of Corollary 1. Follows immediately from Proposition 1.
□

Proof of Corollary 2. Fix some signal s; in what follows I drop the dependence on
s in the notation, where appropriate. In the binary state case, the residual uncertainty
can be expressed as RD(p), where p = p(θh). For any model m, let pm ≡ pm(θh). By
Proposition 2, we know that RD(0) = RD(1) = 0, RD(p) ≥ 0, and that RD is continuous.
This implies that there exists p∗ > 0 where RD(p) is increasing for all p ≤ p∗. By Bayes’
rule, if m(s|θh)/m(s|θl) < (1−p)p∗

p(1−p∗)
, then pm ≤ p∗ so long as q(θh) ≤ p, which in turn implies

that ID(m′) ≥ ID(m) for q(θh) ≤ p and any m′ in favor of θl since RD is increasing on [0, p∗].

Finally, note that for q(θh) ≤ p and any m′′ with m′′(s|θh)/m′′(s|θl) ≤ m(s|θh)/m(s|θl),
pm

′′ ≤ pm ≤ p∗ and so ID(m′) ≥ ID(m
′′).

□

Proof of Proposition 3. Fix some signal s; in what follows I drop the dependence
on s in the notation, where appropriate. Note that RD′(pm) ≤ RD(p

m) +
∑

θ p
m∆uθ. The

inequality results from the fact that the expected regret of m under menu A′ must be at
most the expected regret associated with continuing to choose the action recommended by
m under menu A. Since the actions recommended by m′ are in the original menu A, we
also have the equality RD′(pm

′
) = RD(p

m′
) +

∑
θ p

m′
∆uθ. Model m′ must deliver lower

expected regret than m under D′, and so we have RD′(pm
′
) ≤ RD′(pm), which in turn yields∑

θ p
m′
(θ)∆uθ ≤

∑
θ p

m(θ)∆uθ.
□

Proof of Corollary 3. Fix some signal s; in what follows I drop the dependence on
s in the notation, where appropriate. Take the actions in A that maximize posterior
expected utility for some posterior. These actions can be ordered20 a1, a2, ..., aK where
u(aj, θh) > u(ak, θh) and u(aj, θl) < u(ak, θl) for j > k; the utility-maximizing action is in-
creasing with respect to this order in p(θh). By assumption, no m′ ∈ CD′(M) recommends
a′ from D′, and so Proposition 4 implies that for any m ∈ CD(M) and m′ ∈ CD′(M),
pm

′
(θh) ≤ pm(θh). This in turn implies that any a recommended by m from D and any a′′

recommended by m′ from D′ satisfies u(a, θh) ≥ u(a′′, θh), and u(a, θl) ≤ u(a′′, θl).
□

Proof of Proposition 4. Fix some signal s; in what follows I drop the dependence
on s in the notation, where appropriate. Note that if m recommends a∗ from D′, then m
recommends a∗ from D, since u′(a∗, θ) ≤ u(a∗, θ) for all θ, and u′(a∗, θ) = u(a∗, θ) for all

20This ignores actions that produce identical payoffs, which is without loss of generality.
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θ, a ̸= a∗. Similarly, if m′ recommends a ̸= a∗ from D, then m′ also recommends a ̸= a∗

from D′. Let kθ = u(a∗, θ) − u′(a∗, θ), and let Θ+ collect the states for which a∗ delivers
the maximal payoff. We have

RD(p
m) ≤ RD′(pm)−

∑
θ∈Θ\Θ+

kθp
m(θ)

≤ RD′(pm)

Furthermore, since m′ recommends the same action from both D,D′, we have

RD′(pm
′
) = RD(p

m′
)−

∑
θ∈Θ+

min

{
kθ, u(a

∗, θ)−max
a̸=a∗

u(a, θ)

}
pm(θ)

≤ RD(p
m′
)

Since m /∈ CD(M),m′ ∈ CD(M), RD(p
m′
) < RD(p

m), and so the above two inequalities
imply RD′(pm

′
) < RD′(pm), which in turn implies that m /∈ CD(M).

□

Proof of Proposition 5. Follows directly from Theorem 1.
□

Proof of Proposition 6. Follows directly from Theorem 3.
□

Proof of Corollary 4. Suppose that a is strictly diversified with respect to A. There
exists an action ã that is C-diversified with respect to A satisfying u(a, θ) < u(ã, θ) <
ūA(θ) for all θ. Let M denote any set of interior models for which

∑
θ u(ã, θ)p

m(θ|s) <
maxa∈A

∑
θ u(a, θ)p

m(θ|s) for all m ∈M . To see that such a set exists, let a∗ ∈ A be any ac-
tion that delivers the maximal payoff some state θ∗; there exists an ϵ > 0 s.t. for any m∗ s.t.
for any m∗ satisfying pm∗

(θ∗|s) > 1− ϵ,
∑

θ u(ã, θ)p
m∗

(θ∗|s) < maxa∈A
∑

θ u(a, θ)p
m∗

(θ∗|s)
since u(ã, θ∗) < āA(θ∗) = u(a∗, θ∗).

By construction, for C ′ represented by (u,M), we have ã /∈ C ′(A ∪ {ã}). By Proposi-
tion 6, for any M ⊇ M and C represented by (u,M), ã /∈ C(A ∪ {ã}), which implies
a /∈ C(A ∪ {a}) as desired.

□

Proof of Proposition 7. Fix any equilibrium, and let M denote the set of models
the receiver chooses with positive probability in that equilibrium. To see that for any
m ∈ M , we have pm ∈ [max{0, pmT −

√
v},min{1, pmT +

√
v}], suppose not: any sender

who proposed such m incurs negative payoffs, and so can profitably deviate by proposing
m′ such that pm′=max{0, pmT −

√
v}, which guarantees a non-negative payoff.
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To see that for any m ∈ M , pm cannot lie strictly in the interior of [max{0, pmT −√
v},min{1, pmT +

√
v}], suppose not. It must then be the case that for all m ∈ M

pm ∈ (max{0, pmT−
√
v},min{1, pmT+

√
v}). To see why, note that by Proposition 2 and the

assumption that RD(p) is non-constant in a neighborhood around pmT , it must be the case
that for any p ∈ (max{0, pmT −

√
v},min{1, pmT +

√
v}), RD(p) > min{RD(max{0, pmT −√

v}), RD(min{1, pmT +
√
v})}. Since the decisiveness of all m ∈ M must be the same,

it cannot be the case that pm = {0, pmT −
√
v} or pm = min{1, pmT +

√
v}. This in

turn implies that senders receive strictly positive profits by proposing a model in M , it
must be the case in such an equilibrium that all senders propose a model in M . Let
p = min{pmT } ∪ {pm : m ∈ M}, p = max{pmT } ∪ {pm : m ∈ M}. Consider m′,m′′

satisfying pm′
= p − ϵ, pm′′

= p + ϵ, for ϵ > 0; such m′,m′′ are guaranteed to exist since
pm

∗ ∈ (0, 1) for all m∗ ∈ M . By Proposition 2 and the assumption that RD(p) is non-
constant in a neighborhood around pmT , the receiver must find at least one of m′, m′′

strictly more decisive than any model in M∗. Taking ϵ → 0, any sender has a profitable
deviation to either m′ or m′′, a contradiction.

Therefore, for any equilibrium, any model m the receiver chooses with positive proba-
bility must satisfy either pm = max{0, pmT −

√
v} or pm = min{1, pmT +

√
v}.

Proof of Proposition 9. Note that

IED (m) =
∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)−
∑
θ

max
a′∈A

u(a′, θ)ρ(θ)

= max
a∈A

∑
s

∑
θ

u(a, θ)m(s|θ)ρ(θ)−
∑
θ

max
a′∈A

u(a′, θ)ρ(θ)

and so IED (m) is the maximum over a family of functions that are linear in m. This im-
plies that IED is convex. Therefore, IED (λm + (1 − λ)m′) ≤ max{IED (m), IED (m

′)}, and so
m,m′ /∈ CE

D (M) =⇒ λm+ (1− λ)m′ /∈ CE
D (M)

□

Proof of Proposition 10. Follows immediately from the fact that IED (m) respects the
Blackwell order over M, and that for m = λmT + (1− λ)m∅, mT is a garbling of m and is
therefore dominated by m in the Blackwell order.

□

Proof of Proposition 11. Note that if m recommends a∗ from D′ for some signal s, then
m recommends a∗ from D for s, since u′(a∗, θ) ≤ u(a∗, θ) for all θ, and u′(a∗, θ) = u(a∗, θ)
for all θ, a ̸= a∗. Similarly, if m′ recommends a ̸= a∗ from D for some signal s, then m′ also
recommends a ̸= a∗ from D′ for s. Let Sa∗ denote the signals for which m recommends a∗.
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The above implies that

IED′(m′)− IED′(m) =
∑
s

max
a∈A

∑
θ

u′(a, θ)pm
′
(θ|s)pm′

(s)−
∑
s

max
a∈A

∑
θ

u′(a, θ)pm(θ|s)pm(s)

=
∑
s

max
a∈A

∑
θ

u(a, θ)pm
′
(θ|s)pm′

(s)−
∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)

+
∑
s∈Sa∗

[u(a∗, θ)− u′(a∗, θ)]pm(θ|s)pm(s)

≥
∑
s

max
a∈A

∑
θ

u(a, θ)pm
′
(θ|s)pm′

(s)−
∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)

=IED (m
′)− IED (m)

Since m′ ∈ CE
D (M),m /∈ CE

D (M), IED (m′) − IED (m) ≥ 0, which in turn implies that
IED′(m′)− IED′(m) ≥ 0 and m /∈ CE

D′(M).
□

A.7 Proofs: Characterization and Identification Results

Proof of Theorem 1.

Proof. We first prove the characterization result. Necessity of the axioms follow directly
from the definition of the representation. The proof of sufficiency proceeds in four steps.

Step 1: Construction of u : ∆(Z) → R.

Define the binary relation ⪰∗ on ∆(Z) as follows: for a, b ∈ ∆(Z), b ⪰∗ a if b ∈ C({b, a}).
Note that ⪰∗ is transitive. To see this, suppose that c ⪰∗ b, b ⪰∗ a. We have b ∈ C({b, a}),
c ∈ C({c, b}). If a ∈ C({c, b, a}), then by Monotonicity, we have b ∈ C({c, b, a}) and subse-
quently c ∈ C({c, b, a}). On the other hand, if a /∈ C({c, b, a}), since a does not improve b,
by INA we have c ∈ C(c, b) =⇒ c ∈ C({c, b, a}). Therefore, we have c ∈ C({c, b, a}); since
b does not improve c, INA implies c ∈ C({c, a}) =⇒ c ⪰∗ a.

So ⪰∗ is a complete and transitive preference relation on ∆(Z) that agrees with the
restriction of C to menus of constant acts. Furthermore, ⪰∗ inherits continuity and inde-
pendence properties from Mixture Continuity and Mixture Independence: in particular, ⪰∗

satisfies

1. For a, b, c ∈ ∆(Z), The sets {λ ∈ [0, 1] : λa + (1 − λ)b ⪰∗ c} and {λ ∈ [0, 1] : c ⪰∗

λa+ (1− λ)b} are closed.

2. For a, b, c ∈ ∆(Z), λ ∈ (0, 1), a ⪰∗ b ⇐⇒ λa+ (1− λ)c ⪰∗ λb+ (1− λ)c.

Therefore, by the Expected Utility Theorem (von-Neumann and Morgenstern 1994) there
exists a linear u : ∆(Z) → R that represents the restriction of C to menus of constant acts,
i.e. for a, b ∈ ∆(Z), u(a) ≥ u(b) iff a ∈ C({a, b}).
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Step 2: Characterization without Axiom 7.

We will now show that in the case where Non-Triviality does not hold, C has a decisiveness-
maximizing representation. Suppose that Non-Triviality does not hold. This implies that
for all z, z′ ∈ Z, u(z) = u(z′). By linearity of u, we then have that for a, b ∈ ∆(Z),
u(a) = u(b), and so for any f, f ′ ∈ X, f(θ) ∈ C({f(θ), f ′(θ)}). Monotonicity then implies
that C(A) = A for all A ∈ A. Note that by taking any P ∈ P we are done; C has a
decisiveness-maximizing representation (u, P ).

The remainder of the proof will deal with the case where Non-Triviality holds. There
exists z, z′ ∈ Z s.t. u(z) > u(z′); that is, u satisfies Assumption 1. By linearity of u, we
can without loss of generality assume that [−1, 1] ⊆ u(∆(Z)). By INA and Monotonicity,
we can identify each act f with its utility-valued act u ◦ f ∈ u(∆(Z))Θ. We will work with
utility-valued acts in the remainder of the proof.

Now introduce some notation. Let a0 denote the constant act delivering 0 utility. For
any menu A, let fA denote the act with fA(θ) = maxf∈A f(θ), and let f

A
(θ) = minf∈A f(θ).

Let A0 denote the set of menus A such that fA = a0, and let X− denote the set of acts
with non-positive utility.

Due to Mixture Independence, we can assume that u is unbounded by taking a homoe-
thetic extension of C. Specifically, let Ã denote the collection of all finite subsets of RΘ,
and define the choice function C̃ on Ã by

C̃(A) = C(λAA+ (1− λAa0)

λA = max
{
1/max

θ
fA(θ), 1/max

θ
|f

A
(θ)|

}
.

C̃ is well-defined since λAA + (1 − λA)a0 has utility range in [−1, 1] for all A ∈ Ã, and
extends C by Mixture Independence.

Step 3: Characterization without Axiom 8.

Suppose No Certainty fails. This implies that for all b < 0, b /∈ C(A) for any A ∈ A0.
Following Step 4 in the proof of Lemma 2 in Stoye (2011), this fact, along with INA,
Monotonicity, Mixture Independence, and Mixture Continuity imply that there exists a
collection of events Σ0 ∈ 2Θ and I0 =

⋃
E∈Σ0

{f ∈ X− : ∀ θ ∈ E, f(θ) = 0}, C(A) = A ∩ I0
for all A ∈ X−.

Fix any A, f ∈ A, for which there exists E ∈ Σ0 s.t. f(θ) = fA(θ) for all θ ∈ E.
We want to show that f ∈ C(A). Since 1

2
A + 1

2
(−fM) ∈ A0, and 1

2
f + 1

2
(−fM) ∈ I0,

1
2
f + 1

2
(−fM) ∈ C(1

2
A + 1

2
(−fM)), which implies f ∈ C(A) as desired. By a similar

argument, for A, f ∈ A where there does not exist E ∈ Σ0 s.t. f(θ) = fA(θ) for all θ ∈ E,
we have f ̸∈ C(A).
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The above implies that

C(A) =
⋃

E∈Σ0

{f ∈ A : ∀ θ ∈ E, f(θ) = fA(θ)}.

For each E ∈ Σ0, fix some model induced posterior pE that has support only on E. Letting
P = {pE}E∈Σ0 , note that (u, P ) represents C(A), since for each E ∈ Σ0 pE ∈ I(P |A) if and
only if there exists f ∈ A for which f(θ) ≥ g(θ) for all g ∈ A, θ ∈ E, in which case f ∈ C(A).

The remainder of the proof will deal with the case where No Certainty holds.

Step 4: Construction of utility map.

We first state a basic result.

Lemma 1. There exists b < 0, A ∈ A0 s.t. b ∈ C(A)

Proof. By No Certainty, there exists f , A s.t. f ̸∈ Cθ(A) for all θ, and f ∈ C(A). We
have 1

2
A + 1

2
(−fA) ∈ A0, and 1

2
f + 1

2
(−fA) < 0, and by Mixture Independence we have

1
2
f + 1

2
(−fA) ∈ C(1

2
A + 1

2
(−fA)). Fix b < 0 such that b > 1

2
f + 1

2
(−fA); Monotonicity

implies that b ∈ C(1
2
A+ 1

2
(−fA) ∪ {b}) as desired.

Following Stoye (2011), define the binary relation ⪰C on X− as follows:

f ≻C g ⇐⇒ ∃A ∈ A0 s.t. f ∈ C(A), g ∈ A \ C(A)
f ∼C g ⇐⇒ ∃A ∈ A0 s.t. f ∈ C(A), g ∈ C(A)

Following Step 1 in the proof of Lemma 2 in Stoye (2011), we use INA, Monotonicity,
Mixture Continuity, Mixture Independence, and the conclusion of Lemma 1 to collect the
following properties of ⪰C :

1. ≻C is asymmetric and disjoint from ∼C and ⪰C is complete and transitive.

2. ⪰C is mixture continuous: {λ : λf + (1 − λ)g ⪰C h} and {λ : λf + (1 − λ)g ⪯C h}
are closed.

3. ⪰C is homothetic: for all λ < 0, f ⪰C g ⇐⇒ λf ⪰C λg.

4. ⪰C is monotonic: f ≫ g =⇒ f ≻C g

5. Every act f is ⪰C-indifferent to exactly one constant act a, which we call the certainty
equivalent of f . Let J : RΘ

− → R map each act f ∈ RΘ
− with its certainty equivalent.

Now we collect two additional properties of ⪰C .

Lemma 2. ⪰C is mixture averse: if f ∼Cg, then for all λ ∈ (0, 1), f ⪰C λf + (1 − λ)g.
Furthermore, ⪰C is C-independent: for f, g ∈ X−, b < 0, λ ∈ (0, 1): f ⪰C g ⇐⇒
λf + (1− λ)b ⪰C λg + (1− λ)b.

56



Proof. Mixture Aversion of C straightforwardly implies Mixture Aversion of ⪰C . To show C-
independence, by homotheticity of ⪰C , it suffices to show that ⪰C is translation invariant:
for all f, g ∈ X−, b < 0, f ⪰C g ⇐⇒ f + b ⪰C g + b.

Fix any f ∈ X−, b < 0, and let a be the (unique) certainty equivalent of f . By Lemma
1, there exists b < 0, A ∈ A0 such that b ∈ C(A); by Mixture Independence, we can without
loss assume that b < minθ fA

(θ) + b and b < a+ b. Monotonicity implies that

f ∈ C(A ∪ {f})
a ∈ C(A ∪ {a})

f + b ∈ C(A ∪ {f + b})
a+ b ∈ C(A ∪ {a+ b}).

In conjunction with INA and disjointedness of ∼C and ≻C , the first two lines imply that
{f, a} ⊆ C(A∪{f, a}); Mixture Independence then implies {f + b, a+ b} ⊆ C(A+ b∪{f +
b, a + b}). In conjunction with INA, the last two lines imply that either {f + b, a + b} ∩
C(A∪{f + b, a+ b}) ̸= ∅. ISA then implies that C(A+ b∪{f + b, a+ b})∩{f + b, a+ b} =
C(A ∪ {f + b, a+ b}) ∩ {f + b, a+ b}, and so f + b ∼C a+ b.

The above implies that ⪰C is translation invariant: fixing f, g ∈ X−, b < 0, we have
f ⪰C g ⇐⇒ af ⪰C ag ⇐⇒ af + b ⪰C gf + b ⇐⇒ f + b ⪰C g + b.

Note that

C(A) = argmax
f∈A

J(f − fA).

To see this, suppose f ∈ C(A). By Mixture Independence, f − fA ∈ C(A− fA), which in
turn implies f − fA ⪰C g − fA for all g ∈ A, and so J(f − fA) ≥ J(g − fA) for all g ∈ A.
Conversely, suppose J(f − fA) < J(g − fA) for some g ∈ A. Then f − fA ≺C g − fA,
and so by disjointedness of ≻C and ∼C , we have f − fA /∈ C(A+ fA) and so f /∈ C(A) by
Mixture Independence.

Since ⪰C is mixture continuous, monotonic, C-independent, and mixture averse, fol-
lowing arguments in Gilboa and Schmeidler (1989), there exists a set of posteriors P ∈ P
such that

J(f) = max
p∈P

∑
θ

f(θ) · p(θ)

and so by the above, we have

C(A) = argmax
f∈A

max
p∈P

∑
θ

[
u(f(θ))−max

g∈A
u(g(θ))

]
p(θ).

and so (u, P ) represents C. Furthermore, P satisfies Assumption 2, since otherwise C vio-
lates No Certainty.

We now prove the identification result. Suppose that (u, P ) and (u′, P ′) satisfy Assump-
tions 1 and 2 and represent C. Since the restriction of C to menus constant acts has an
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expected-utility representation, utility is identified up to affine transformation, i.e. there
exists α > 0, β s.t. u = αu′ + β. We can therefore without loss assume that u′ = u. Say
that P ∈ P represents C if (u, P ) represents C. Since u satisfies Assumption 1, its range
is a non-trivial interval I ≡ u(∆(Z)), and we can without loss assume that [−1, 1] ⊆ I.
Henceforth, identify each act f by the corresponding utility act u ◦ f ∈ IΘ.

For P ∈ P and c in the strict interior of I, define

B(c|P ) =
⋂
p∈P

{
f ∈ IΘ : f · p < c

}
B(c|P ) =

⋂
p∈P

{
f ∈ IΘ : f · p ≤ c

}
Lemma 3. If P and P ′ represent C, then B(c|P ) = B(c|P ′)

Proof. Fix any c ∈ I, and any P ∈ P that represents C. For λ ∈ (0, 1), f ∈ IΘ, let
fλ = (1 − λ)f + λc. We will show that f ̸∈ B(c|P ) iff there exists λ ∈ [0, 1) and A ∈ A
containing c, fλ such that fλ ∈ C(A). To see ( =⇒ ), suppose f ∈ C({f, c}). Then there
must exist a model induced posterior p ∈ P s.t. f · p ≥ c, and so f ̸∈ B(c|P ).

To see ( ⇐= ), suppose f /∈ B(c|P ). There exists p∗ ∈ P s.t. f · p ≥ c. Take
any sequence ϵk → 0, where ϵk ∈ (0, 1 − c) for all k. For all k, there exists λk ∈ (0, 1)
satisfying maxθ∈Θ fλk

(θ) < c+ ϵk; fix such a sequence of λk. For each k, define a set of acts
Gk = (gk,θ)θ∈θ where for each θ, k,

gk,θ(θ
′) =

{
0 θ ̸= θ′

c+ ϵk θ = θ′

Define a sequence of menus Ak = Gk ∪ {fλk
, c}. By construction, for all Ak we have

I(P |Ak) = argmaxp∈P maxf∈Ak
f ·p. Since P is closed and no p ∈ P places probability 1 in

any state by Assumption 2, there exists some K such that for all k > K, maxp∈P gk,θ ·p ≤ c
for all θ, which in turn implies that for all k > K,

max
p∈P

gk,θ · p ≤ c ≤ fλk
· p∗

which in turn implies that for all k > K, we have fλk
∈ argmaxf∈Ak

f ·p, and so fλk
∈ C(Ak)

as desired.
Now, suppose (u, P ) and (u, P ′) represent C and fix any c ∈ I. The above implies that

B(c|P ) = B(c|P ′), and so B(c|P ) = cl(B(c|P )) = cl(B(c|P ′)) = B(c|P ′).

Let Pext = {ext(P ) : P ∈ P} denote the collection of extreme points formed from
elements in P , and let Pconv collect the convex elements in P . First, we will show that
co : Pext → Pconv is one-to-one. To see this, note that for P ∈ Pext, we have ext(co(P )) = P .
Also, for P ∈ Pconv, since P is a convex, closed subset of ∆(Θ) and is therefore compact,
by the Minkowski-Caratheodory Theorem co(ext(P )) = P . Therefore, co : Pext → Pconv

has an inverse and so is one-to-one.
Now, towards a contradiction, suppose that ext(P ) ̸= ext(P ′). Define Pconv = co(ext(P ))

and P ′
conv = co(ext(P ′)); by the above, we have Pconv ̸= P ′

conv. Since P, P ′ are closed and
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therefore compact, so are Pconv, P
′
conv. Since Pconv ̸= P ′

conv, we can without loss of general-
ity take there to be p ∈ Pconv \ P ′

conv. By a separating hyperplane theorem (Dunford and
Schwartz, 1957, Theorem V.2.10), there exists a nonzero ξ ∈ RΘ and a c ∈ R such that

max
p′∈P ′

conv

ξ · p′ < c < ξ · p

Without loss of generality, we can take an affine transformation of ξ and c so that ξ ∈ IΘ

and c ∈ I. This then implies that B(c|Pconv) ̸= B(c|P ′
conv). By Proposition 1, the fact

that (u, P ) and (u, P ′) represent C implies that (u, Pconv) and (u, P ′
conv) also represent C.

Lemma 3 implies B(c|Pconv) = B(c|P ′
conv), a contradiction.

Proof of Theorem 2.

Proof. The proof for the characterization result is contained in Steps 1–2 from the proof
for Theorem 1.

To show the identification result, fix some (u, P ), (u′, P ′) that represent C. Following
the proof of Theorem 1, we can without loss assume that u′ = u. Say that P ∈ P represents
C if (u, P ) represents C. Since u satisfies Assumption 1, its range is a non-trivial interval
I ≡ u(∆(Z)), and we can without loss assume that [−1, 1] ⊆ I. Henceforth, identify each
act f by the corresponding utility act u ◦ f ∈ IΘ.

Now fix any c ∈ I, θ ∈ Θ. Take any sequence ϵk → 0 satisfying ϵk ∈ (0, 1− c) for all k.
Define a sequence of utility acts gk,θ where for each k,

gk,θ(θ
′) =

{
0 θ ̸= θ′

c+ ϵk θ = θ′

and define Ak = {c, gk,θ}. It suffices to show that for any P representing C, δθ /∈ P if and
only if there exists K s.t. for all k > K, gk,θ /∈ C(Ak). To see this, suppose that δθ /∈ P .
Since P is closed, there exists some p < 1 such that maxp∈P p(θ) ≤ p < 1 and so for all
p ∈ P , gk,θ · p ≤ p(c + ϵk). Since p < 1 and ϵk → 0, there exists K s.t. for all k > K,
p(c + ϵk) < c, which implies that gk,θ /∈ C(Ak). Conversely, suppose that δθ ∈ P . This
implies δθ ∈ I(P |A) for any menu A, and so gk,θ ∈ C(Ak) for all k.

Proof of Theorem 3.

Proof. Begin by proving the first statement. Suppose (u, P ), (u, P ′) represent C, C ′, respec-
tively, and suppose co(P ) ⊆ co(P ′). Fix any A ∈ A, h ∈ HA, and suppose h ̸∈ C(A, {h}).
By construction, there exists c ≤ 0 such that u(h(θ)) − maxf∈A u(f(θ)) = c for all θ.
h ̸∈ C(A, {h}) implies that

c < max
p∈P

max
g∈A

[
u(g(θ))−max

f∈A
u(f(θ))

]
≤ max

p∈P ′
max
g∈A

[
u(g(θ))−max

f∈A
u(f(θ))

]
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where the second inequality is implied by co(P ) ⊆ co(P ′). But this implies that h /∈
C ′(A, {h}), as desired.

Now prove the second statement. Suppose (u, P ), (u, P ′) represent C, C ′, respectively,
and suppose that C ′ is more diversification averse than C, and P ′ satisfies Assumption 2.
Let I = u(∆(Z)); we can without loss assume [−1, 1] ∈ I. We can identify each act f with
its corresponding utility act u ◦ f ∈ IΘ.

Towards a contradiction, suppose that co(P ) ̸⊆ co(P ′); this guarantees the existence of
some p ∈ co(P ) \ co(P ′), where p ∈ P . By a separating hyperplane theorem (Dunford and
Schwartz, 1957, Theorem V.2.10), there exists a nonzero ξ ∈ RΘ and c ∈ R s.t.

max
p′∈P ′

ξ · p′ < c < ξ · p

By rescaling, we can without loss assume that ξ ∈ IΘ and c ∈ I. Since P ′ satisfies
Assumption 2, there exists ϵ > 0 such that for acts (gθ)θ∈Θ satisfying

gθ(θ
′) =

{
c+ ϵ θ′ = θ

−1 otherwise

we have gθ · p′ < c for all p′ ∈ P ′ and all θ. There exists λ ∈ (0, 1) such that (λξ + (1 −
λ)c)(θ) < c+ ϵ for all θ; fix such a λ and let f = λξ + (1− λ)c. Let A = {f} ∪ {gθ}θ∈Θ; by
construction, the constant act c is C-diversified wrt. A.

Since c < f · p, c /∈ C(A ∪ {c}). Note, however, since maxp′∈P ′ f · p′ < c and also
maxp∈P ′ gθ · p′ < c for all θ, c = C ′(A ∪ {c}). This implies that C ′ is not more diversi-
fication averse than C, a contradiction; we have co(P ) ⊆ co(P ′) as desired.
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