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Abstract

When faced with decision-relevant information, decision-makers are often exposed
to a multiplicity of different models, or accounts of how information should be in-
terpreted. This paper proposes a theory of model selection — an account of what
models decision-makers find compelling, and ultimately adopt — based on the insight
that individuals seek decisive models that provide clear guidance regarding the best
course of action. The decisiveness criterion is characterized by a demand for extreme
models, which generates inferential biases such as overprecision and confirmation bias,
but predicts meaningful bounds on the extent of these biases. The dependence of the
decisiveness criterion on the decision-maker’s objectives can produce documented pat-
terns of preference reversals, rationalize seemingly contradictory patterns of inferential
attribution errors, and generate novel predictions as to how belief polarization can
arise along heterogeneity in decision-makers’ objectives. I discuss applications of the
theory to financial decision-making, the provision of expert advice, and social learning
through the exchange of models.
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1 Introduction

When faced with uncertainty over the correct course of action, decision-makers are often
confronted with an abundance of potentially decision-relevant information. It is increasingly
understood that in order to make sense of this information, decision-makers often reason
through the lens of a model – an account of how information should be interpreted. When
an investor decides to sell a security because of a recent price drop, she acts based on a model
that relates price patterns to future performance. When a manager rejects a candidate on
the basis of a botched interview in spite of an impressive track record, she appeals to a model
specifying what information is most diagnostic of candidate productivity. A voter who bases
her political views on the reporting of certain news outlets while remaining skeptical toward
others operates according to a model that specifies the credibility of different sources. In each
of these cases, the decision-maker is guided by a framework, whether implicit or explicit, that
specifies what information is relevant to the decision at hand, and what conclusions should
be drawn from that information.

Decision-makers are often exposed to multiple candidate models: there are many plausi-
ble ways to value a firm, evaluate a job candidate, or interpret the news, and these models
may be supplied by experts, encountered through social exchange, or developed through
introspection. In contrast to the rational expectations view, under which decision-makers
interpret data according to a well-calibrated model, decision-makers may not know the true
model that should guide their inference, and so must decide which model to adopt for a
given situation. In many cases, decision-makers are drawn to models that lead them astray:
professional forecasters overreact to market signals, hiring managers put too much stock
in noisy interview measures, and voters are misled by baseless claims and misinformation.
When individuals seek to interpret information, what kinds of models do they find com-
pelling, and ultimately use to guide their decision-making?

One potential answer stems from the basic insight that people dislike indecision, an
observation which draws support from research in psychology. First, research on cognitive
dissonance has demonstrated that individuals seek to avoid the psychological discomfort that
arises from holding cognitions that are inconsistent with each other (Festinger, 1957), and
modern accounts of dissonance theory emphasize the role between dissonance and indecision,
wherein dissonance is aroused when “cognitions with action implications are in conflict with
each other, making it difficult to act” (Harmon-Jones et al., 2015). A second line of research
studies individuals’ need for cognitive closure, conceptualized as a ”desire to have a definite
answer to a question, as opposed to uncertainty, confusion and ambiguity” (Kruglanski and
Fishman, 2009). Under this account, individuals desire closure because it affords “a base for
action”, and research has studied how the need for closure affects how individuals process
information and revise their beliefs.1

1More recently, Proulx and Inzlicht (2012) proposes a psychological framework of sense-making to unify
these two accounts, in addition to a broad range of related accounts and evidence in psychology. Under this
account, events that violate meaning — defined as a set of expected relationships that serve as a “guide for
action” — leads to a physiological state of aversive arousal, which individuals seek to reduce.
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If individuals are indeed averse to indecision, they may seek models that are decisive:
that provide clear guidance regarding the best course of action. In this paper, I propose a
formal notion of decisiveness, under which a model is decisive to the extent it reduces the
decision-maker’s residual uncertainty over the optimal course of action; I then analyze the
inferences and choices of a decision-maker who is drawn to such models in interpreting infor-
mation. In my formal framework, a decision-maker chooses from a menu of actions A, and
observes the realization of data s that may be informative about the payoff-relevant state θ.
To take an example in which the decision-maker is evaluating a job candidate, A may be the
choice of whether to hire or reject the candidate, s is the information about the candidate
observed by the decision-maker, such as their qualifications and interview performance, and
θ is the underlying productivity of the candidate. In interpreting this data, the decision-
maker does not have access to the true data-generating process but instead entertains a set
of models: likelihood functions that map data to posterior beliefs over states. For example,
the decision-maker may entertain models under which interview performance is highly diag-
nostic of productivity, in addition to models that instead emphasize the diagnostic value of
the candidate’s track record.

A model is decisive to the extent it recommends an action that, under the beliefs induced
by the model, is close to the ex-post optimal course of action. That is, given pm(θ|s), the
posterior over states θ induced by model m for the observed data s, the decisiveness of m is

I(m|s) = −

[∑
θ

max
a′∈A

u(a′, θ)pm(θ|s)−max
a∈A

∑
θ

u(a, θ)pm(θ|s)

]

where u(a, θ) gives the payoff of action a if the state is θ. Note that decisiveness corresponds
to a payoff-metric measure of residual uncertainty: −I(m|s) is equal to the decision-maker’s
willingness to pay to resolve remaining uncertainty about the state, under the beliefs induced
by m. In other words, a model is decisive if a decision-maker operating under that model
ascribes little value — if such an alternative was available to her — to resolving uncertainty
prior to making her decision, instead of choosing the course of action recommended by the
model.

Decisive models make strong recommendations, but they may also lead the decision-
maker astray: a model suggesting that stock returns are highly predictable on the basis
of past returns will be decisive, but is also far from the truth. Decisive models need not
coincide with the true model governing the data-generating process, and to the extent the
decision-maker entertains such models, the decisiveness criterion will distort their beliefs
and decision-making. Importantly, in my framework the decision-maker does not know the
true model — she does not willingly commit to a model she knows is wrong. Instead, my
framework corresponds to a cognitive process in which the DM entertains a set of candidate
models and tries each on “for size”, assessing each model according to its implications for
her decision and ultimately adopting the model that feels the most compelling. As such, this
framework departs from certain theories of motivated beliefs in which the decision-maker
seeks to maintain a set of beliefs in spite of the errors that may arise when she acts on them;
rather, the decision-maker in my framework seeks decisive models precisely because she is
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motivated to identify the correct course of action.

This paper analyzes the systematic distortions in inference and choice produced by model
selection under the decisiveness criterion. In particular, I show that the decisiveness crite-
rion is characterized by a demand for models that render the decision-maker’s environment
more predictable. This causes the decision-maker to exhibit forms of both overprecision and
confirmation bias: when initially uncertain over the optimal course of action, the decision-
maker favors models that overstate the diagnostic value of the data, and when sufficiently
predisposed towards a course of action, the decision-maker favors models that minimize
the diagnostic value of disconfirmatory data. I also show how the dependence of the de-
cisiveness criterion on the decision-maker’s objectives can produce documented patterns of
preference reversals, rationalize seemingly contradictory patterns in social attribution, and
generate novel predictions as to how belief polarization can arise along heterogeneity in
decision-makers’ objectives. Finally, I demonstrate how choice under the decisiveness crite-
rion exhibits an aversion to various forms of hedging against uncertainty.

To illustrate the basic implications of the decisiveness criterion, consider a simple exam-
ple. Suppose that a manager is deciding whether or not to make an offer to a potential inter-
nal hire to join her team. The candidate is either high-productivity (θh) or low-productivity
(θl), and the manager believes either possibility is equally likely ex-ante. The manager’s
payoffs are as follows:

θh θl
hire v −k
reject 0 0

That is, the manager wishes to hire the candidate only if they are high-productivity.

The manager has access to two components of information on the candidate: the candi-
date’s track record in their previous role, sR, and the candidate’s performance in a newly
developed interview assessment tailored to the current role sI . Suppose that performance
in either component c ∈ {R, I} can either be high (sc = 1) or low (sc = 0), and that the
manager is uncertain over the diagnostic value of each piece of information. In particular,
suppose the manager entertains three models: mR, under which only the candidate’s track
record has diagnostic value, mI , under which only the interview assessment has diagnostic
value, and mRI , under which both components hold equal diagnostic value. In particular,

denoting Lm(sR, sI) = m(sR,sI |θh)
m(sR,sI |θl)

as the likelihood ratio associated with model m, we have
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LmR(sR, sI) =

{
4 sR = 1

1/4 sR = 0

LmI (s
R, sI) =

{
4 sI = 1

1/4 sI = 0

LmRI (s
R, sI) =


4 sI = sR = 1

1 sI 6= sR

1/4 sI = sR = 0

Suppose that the candidate’s track record demonstrates high performance in their previ-
ous role, but that they perform poorly in the interview assessment: (sR, sI) = (1, 0). Which
model does the manager adopt under the decisiveness criterion? Below, we consider how the
manager acts under two different hiring regimes, each of which dictate the relative costs and
benefits of hiring.

Growth regime: v = 4, k = 1. In this regime, the benefits of hiring a high-productivity
candidate are greater than the costs of hiring a low-productivity candidate; the manager is
therefore predisposed to hiring the candidate. Here, mR is the most decisive model. The
intuition is as follows: under mR the data suggests that the candidate is likely high produc-
tivity, providing the manager with yet greater justification for hiring the candidate. On the
other hand, under mRI the data are inconclusive about candidate productivity, and so this
model provides weaker justification for hiring compared to mR. Under mI , the data are bad
news about the productivity of the candidate, an interpretation which, given the manager’s
decision problem, would result in her being maximally uncertain over whether to hire or
reject the candidate. As such, mR provides the most decisive recommendation of the three
models.

Downsizing regime: v = 1, k = 4. In this regime, hiring costs are high, and so the manager
is predisposed to rejecting the candidate. Here, mI is the most decisive model. The intuition
is analogous to the case above: while both mI and mRI recommend that the manager reject
the candidate, mI provides a stronger justification toward this course of action, whereas
under mR, the manager is maximally uncertain over whether to hire or reject.

This example illustrates two key properties of the decisiveness criterion. First, the cri-
terion tends to privilege extreme models — formally, models that cannot be expressed as
a mixture of other models the DM entertains. Note that in either case, the model mRI ,
which ascribes some diagnostic value to both the candidate’s track record and interview
performance, and can be expressed as the mixture of mR and mI , is never selected. The
intuition is as follows: if the manager prefers reject under mRI , mI provides yet stronger
justification towards reject, whereas if the manager prefers hire under mRI , mR provides yet
stronger justification towards that course of action; the manager must find mRI less decisive
than one of the extreme models, which will provide greater certainty regarding her optimal
hiring decision. Second, the decisiveness criterion depends crucially on the decision-maker’s
objectives, as the difference between the two regimes demonstrate: in each regime, the model
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that supports the action that the manager is predisposed towards choosing is more decisive
than the model that provides discomfirmatory evidence.

The remainder of the paper is organized as follows: Section 2 develops the general frame-
work and introduces the decisiveness criterion. Section 3 characterizes the implications of
the decisiveness criterion for model selection, holding fixed the action space and payoffs.
I show how model selection under the decisiveness criterion is principally characterized by
two key conditions, which formalize the notion in which the criterion privileges models that
render the decision-maker’s environment predictable: 1) the decision-maker has a tendency
to adopt extreme models — those that cannot be expressed as a mixture of other models she
entertains, and 2) the decision-maker has a preference for models that induce high certainty
in a single state. I apply these results to show how the decisiveness criterion generates forms
of two documented patterns of biased inference: overprecision and confirmation bias. In
particular, the criterion predicts that if the decision-maker has greater initial uncertainty
with respect to her available courses of action, she will tend to exhibit overprecision, seeking
models that overstate the informational content of her signals. However, as the decision-
maker’s prior sufficiently favors one course of action, she will no longer uniformly exhibit
overprecision, but instead seek models that explain away disconfirmatory information, pro-
ducing a form of confirmation bias. Finally, I illustrate the relationship between my model
selection criterion and related criteria, such as the Blackwell ordering on experiments and
notions of model parsimony.

Section 4 studies how model selection under the decisiveness criterion varies with the
payoffs and objectives of the decision-maker. First, I demonstrate that the decisiveness cri-
terion generates a “sour grapes” effect: the addition of an unchosen action a will lead the
decision-maker towards models that ascribe a low value to choosing a, as well as similar
actions. I show how this sour grapes effect predicts context effects documented in Tversky
and Shafir (1992), who show how the addition of an action to the choice set can reduce sub-
jects’ propensity to choose similar, competing actions, and instead induce them to choose
dissimilar actions. Next, I show how under the decisiveness criterion, the attractiveness of a
model is increasing in the relative attractiveness of the actions that the model recommends.
I demonstrate how this property can account for seemingly contradictory patterns in so-
cial attribution in which individuals neglect the confounding influence of situational factors
when inferring dispositional traits of others from their behavior, yet make the opposite error
when interpreting poor behavior from ingroup members (Vonk and Konst, 1998). In another
application, I show how the same force can generate belief polarization resulting from hetero-
geneity in decision-makers’ objectives and preferences. Finally, I study how model selection
varies with the payoff-relevance of states. In particular, I show that when a state has the
interpretation of a nuisance variable — that is, when models that attribute the signal to
that state are less informative about other states compared to models that neglect that state
— the DM will tend to adopt models that neglect that state when it is not payoff-relevant. I
demonstrate how this property can account for the observed sensitivity of various attribution
errors in inference problems to decision-maker’s inferential goals, as documented by Krull
(1993) and Graeber (2022).
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In Section 5, I discuss implications for choice. I show that choice under the decisiveness
criterion is characterized by an aversion to hedging or diversification. In addition, I study
comparative statics of choice under the decisiveness criterion, focusing on a notion of relative
aversion to C-diversified actions — that is, actions whose payoffs fall short of the maximal
payoff that can be achieved in each state by a constant. I show that the decision-maker will
be more diversification-averse if she entertains a larger set of models, and that conversely,
a greater level diversification-aversion reveals that the decision-maker entertains a larger set
of models. In Appendix A.6, I provide a behavioral characterization of the model and dis-
cuss its identification properties, building directly on results in Stoye (2011), which studies
a closely related model of min-max regret.

Section 6 discusses additional applications of the decisiveness criterion. Whereas the
basic framework takes the set of models the decision-maker entertains as primitive, each of
these applications considers a process that may give rise to this set. In the first application,
I analyze a setting in which expert advisors supply models to the decision-maker, and ap-
ply the decisiveness criterion to shed light on why individuals are drawn to certain advice.
I demonstrate that this force, in conjunction with competition between advisors, induces
advisors to inflate the certainty of their recommendations. In the second application, I an-
alyze a setting in which social learning occurs through the exchange of models, following
the framework introduced in Schwartzstein and Sunderam (2022), and demonstrate that the
decisiveness criterion predicts group polarization arising from such a process.

Section 7 discusses extensions to the basic framework. In the first extension, I address a
shortcoming of the decisiveness criterion — that when the decision-maker entertains the full
space of models, she will always come to adopt models that resolve all residual uncertainty,
regardless of the plausibility of those models. I discuss two methods of constraining the space
of models the DM entertains, one which assumes a cost of adopting far-fetched beliefs, the
other which stipulates an entry condition on the models the DM can entertain based on the
notion of model fit developed in Schwartzstein and Sunderam (2021). In the second extension,
I outline an ex-ante version of the model in which the decision-maker adopts a model prior
to the signal realization and evaluates models based on their expected decisiveness, averaged
over signal realizations. I show that analogs of certain properties — such as the preference for
extreme models, overprecision, and comparative statics involving the relative attractiveness
of actions and the decision-relevance of states — continue to hold the ex-ante case, whereas
others, such as confirmation bias and the sour grapes effect, do not. All proofs are collected
in the Appendix.

Related Literature

This paper directly contributes to an active literature studying the implications of model se-
lection, which has focused on several distinct model selection criteria. One criterion is model
fit, corresponding to the notion that decision-makers are drawn to models that explain the
data well. In particular, the formal framework employed in this paper draws directly from
Schwartzstein and Sunderam (2021), who analyze “model persuasion” — in which a per-
suader influences the model the receiver uses to interpret the realized data — and assume
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that receivers employ a model selection criteria based on fit. Aina (2022) builds on this
framework, analyzing a setting in which the persuader commits to a set of models prior to
the realization of the data, whereas Schwartzstein and Sunderam (2022) adapt the framework
to study social learning based on the exchange of models. In contrast, this paper focuses
primarily on non-strategic contexts, in which the set of models the decision-maker entertains
is primitive; however, Section 6 discusses applications of the decisiveness criterion to strate-
gic and social learning contexts. Operating under different formal frameworks, Izzo et al.
(2021) and Hong et al. (2007) study the implications of fit-based model selection, and focus
on political persuasion and a non-strategic financial decision-making context, respectively.
Another criterion that has received attention in the literature is optimism, corresponding to
the notion that decision-makers are drawn to “hopeful narratives”. Eliaz and Spiegler (2020)
formalize narratives as causal models (directed acyclic graphs) to study political persuasion,
and posits a model selection criteria based on optimism, whereas Caplin and Leahy (2019)
studies the implications of model selection based on optimism for belief polarization, trading
decisions, and the formation of asset bubbles.

The decisiveness criterion provides an account of what makes a model compelling that is
complementary to these existing approaches, and in particular delivers predictions distinct
from those of selection criteria based on fit or optimism. The fit criterion, for one, only con-
cerns how well models can explain past data, and is silent on how individuals may be drawn
to models due to their implications for future action. For example, one might imagine that
employers continue to place high stock in unstructured interviews (Dana et al., 2013) not
necessarily because such interviews have demonstrated explanatory power over the produc-
tivity of past hires, but because taken at face value, they provide strong recommendations for
hiring decisions. Similarly, investors may find technical analysis appealing not just because
it provides an explanation for realized price trends, but also because it often provides a clear
recommendation on whether to buy or sell. Importantly, because a fit-based model selection
criterion is backward-looking, without further structure and assumptions, such a criterion
cannot account for the possibility that the model a decision-maker adopts can be shaped by
their objectives. On the other hand, while an optimism-based criterion takes seriously the
idea that a model’s forward-looking implications may matter for model selection, it is clear
that decision-makers also regularly adopt models that do not induce optimistic beliefs. For
example, employers may overstate the diagnostic value of an interview even if it produces
bad news about the productivity of the candidate, and voters are swayed by political spin
often solely focused on casting the opposition in a negative light. Because a decisive model
need not lead to optimistic beliefs, as illustrated in the motivating example, the decisiveness
criterion can rationalize the adoption of such models.

Though the decisiveness criterion aims to capture a psychological notion distinct from
regret — namely, that individuals are drawn to clear recommendations that resolve indeci-
sion — the criterion is formally equivalent to a formulation of expected regret, and therefore
relates to a large literature studying the implications of regret aversion in decision-making
(e.g. Bell, 1982; Loomes and Sugden, 1982; Hayashi, 2008; Sarver, 2008; Stoye, 2011). This
literature studies how regret aversion may affect choices over actions or menus of actions,
corresponding to the psychology that the desire to avoid regret may affect choices prior to
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the realization of uncertainty. This paper, on the other hand, focuses on the implications
of a regret-based criterion for model selection and its subsequent implications for decision-
making, motivated by the notion that individuals find models compelling to the extent that
they guide future action. Formally, this theory has a tight connection to a model of multiple-
priors min-max regret studied in Hayashi (2008) and subsequently Stoye (2011), in which the
decision-maker chooses the action to maximize expected utility (minimize expected regret)
under the regret-maximizing prior belief. My theory corresponds to a model in which the
decision-maker instead chooses to maximize expected utility under the regret-minimizing
prior belief. While the two models produce contrasting predictions for both model selection
and choice — for instance, min-max regret would predict that the DM always selects mRI in
the hiring example analyzed above, whereas the decisiveness criterion predicts that the DM
never selects mRI — the axiomatic characterization of my model builds directly on results
from Stoye (2011).

One paper that takes a related conceptual approach is Eyster et al. (2021), which develops
a model of ex-post rationalization in which a decision-maker adopts preferences to minimize
an ex-post notion of regret with respect to past choices, motivated by evidence for the
sunk-cost fallacy. This approach is both formally distinct from and complementary to the
approach taken in this paper, which develops a theory in which the decision-maker adopts
models that minimize ex-ante regret. In the hiring example analyzed above, for instance,
model selection under ex-post rationalization depends crucially on each model’s implications
for the optimality of actions the decision-maker has already taken, such as previous hiring
decisions. On the other hand, model selection under the decisiveness criterion depends only
on each model’s implications for the decision problem the decision-maker currently faces.

2 Framework and Decisiveness Criterion

2.1 General Setup

Consider a decision-maker (the DM) with priors ρ over a finite set of payoff relevant states
Θ, and updates her beliefs about the payoff relevant state given a signal s ∈ S. The DM
entertains a set of models M , where each model m ∈ M is a mapping from payoff relevant
states to a probability distribution over signals: m : Θ→ ∆(S). LetM denote the set of all
models. Let mT denote the true model that governs the data-generating process.

The DM faces a menu of actions A and the payoff function u : A×Θ→ R; call D = (A, u)
the DM’s decision problem. Assume that the decision problem is well defined, in that for
any beliefs there will be a set of expected-utility maximizing actions. Also assume that the
set of models the DM entertains is closed.

Assumption 1. For all p ∈ ∆(Θ), arg maxa∈A
∑

θ u(a, θ)p(θ) is nonempty.

Assumption 2. M is closed.
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The timing is as follows: nature first draws the state θ and the signal s is generated accord-
ing to mT and is observed by the DM. The DM then adopts a model m ∈M , and forms the
posteriors pm(·|s) according to Bayes rule, where pm(θ|s) = m(s|θ)ρ(θ)/(

∑
θ′m(s|θ′)ρ(θ′)).

The DM then takes the action that maximizes the model-induced posterior expected utility;
let

AmD (s) ≡ arg max
a∈A

∑
θ

u(a, θ)pm(θ|s)

denote the set of actions recommended by m, and say that m recommends a from D if
a ∈ AmD (s). After the action is taken, the DM’s payoffs are then realized according to u and
the realized state θ.

We now specify the criterion that governs the DM’s model selection. For a posterior
belief p and decision problem D, let

RD(p) =
∑
θ

max
a′

u(a′, θ)p(θ)−max
a

∑
θ

u(a, θ)p(θ) (1)

denote the residual uncertainty associated with p: it is the average difference in utility
between the ex-post optimal action in each state and the ex-ante optimal action, which is
equal to the DM’s willingness-to-pay to uncertainty prior to choosing an action given beliefs
p.2 Define the decisiveness of a model m given realized signal s as follows:

ID(m|s) = −RD(pm(·|s)) (2)

The DM adopts a model that maximizes decisiveness, satisfyingm ∈ arg maxm∈M ID(m|s).
Decisive models make strong prescriptions about the optimal course of action, where here a
prescription is strong in the sense that it recommends an action that is likely close to the
ex-post optimal action. That is, a model is decisive to the extent the DM ascribes little
value — if such an alternative was available — to resolving uncertainty prior to making her
decision, instead of choosing the course of action recommended by the model.

The decisiveness criterion captures a notion of what it means for a model to guide ac-
tion. Two related notions of guidance that are not captured by this criterion are model
consistency and parsimony. Individuals may seek models that provide consistent guidance
– that is, models that recommend the same action under many realizations of the data. For
example, consider a model of stock returns under which the price path follows a random walk
with positive drift; for any history of returns, the model’s recommendation is the same: the
DM should buy and hold. Such a model produces a consistent recommendation, in contrast
to models that recommend various strategies to time the market depending on past returns.
As an application in Section 3.3 explores, the decisiveness criterion will tend to privilege
models of the latter kind over the former: under this criterion, it is not the consistency of
guidance that matters, but rather its strength as measured by residual decision uncertainty.
Individuals may also be drawn to parsimony – that is, they may see a model as providing

2RD is formally equivalent to a formulation of the expected regret under beliefs p.
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better guidance to the extent it provides a simplified way of translating data into action, for
instance, by directing focus to certain features of the data while ignoring others. In Section
3.2, I show that the decisiveness criterion does not universally privilege such simplified mod-
els, but rather generates predictions as to when such models will be selected by the DM.

Note that in this framework, model selection occurs ex-post: after the signal is realized,
the DM evaluates each model based on its decisiveness, given the signal realization, and
adopts the most decisive model. One might instead imagine an account in which the DM
evaluates each model according to an ex-ante notion of decisiveness, and adopts a model
prior to the signal realization. The ex-post notion may be more appropriate for analyzing
situations in which the DM faces a decision problem with an idiosyncratic information struc-
ture, as in the motivating example, in which the manager seeks to make a one-off hire on the
basis of information specific to that particular candidate. Furthermore, because the ex-post
decisiveness of a model can be evaluated solely on the basis of its recommendation given the
observed signal realization, whereas ex-ante decisiveness requires the DM to consider what
the model would recommend for all possible signal realizations, ex-post decisiveness may be
more reasonable criterion for studying settings in which the set of possible signal realiza-
tions may be large, unknown to the DM, or otherwise hard for the DM to imagine. The
ex-ante perspective, on the other hand, may be more appropriate for situations in which the
DM faces a sequence of decision problems that share a common information structure – for
example, if the hiring manager instead sought to evaluate a collection of candidates on the
basis of their performance in a standardized test. While this paper focuses primarily on the
ex-post notion of decisiveness, in Section 7.2 I outline a formulation of ex-ante decisiveness,
and compare the implications of the ex-ante and ex-post specifications of decisiveness for
model selection.

Finally, the fact that the decisiveness criterion is defined with respect to a decision
problem raises the question of how the theory can be applied to situations where the DM
does not face a particular decision problem but nevertheless has the opportunity to learn
from data. In such situations, one natural approach is to assume that the DM learns from
data as if they face a prediction problem — that is, as if they are tasked with reporting a
set of beliefs from A = ∆(Θ) and paid according to a scoring function u : ∆(Θ) × Θ → R.
In Appendix A.1, I characterize model selection under the class of prediction problems with
incentive-compatible scoring rules.

2.2 Examples

The following set of examples illustrate the basic mechanics of the decisiveness criterion. In
each of these examples, we take the realized signal as given and work directly with model-
implied posteriors pm(·|s).

Example (Hiring Decision). Consider the hiring decision from the introduction. Here,
the payoff relevant states are the productivity of the candidate, Θ = {θl, θh}, and the DM’s
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decision problem is given by the actions A = {hire, reject} and the utility function

u(a, θ) =


v a = hire, θ = θh

−k a = hire, θ = θl

0 a = reject

Fix a model m, and let pmh = pm(θh|s) denote the model-implied posterior belief in θh. For
pmh ≥ k

v+k
the DM chooses hire, and chooses reject otherwise. The residual uncertainty

associated with m is then

RD(pm(·|s)) =

{
k(1− pmh ) pmh ≥ k

v+k

vpmh otherwise

That is, models that induce beliefs toward either extreme tend to be more decisive, and
the range for which decisiveness is increasing in pmh is increasing in the value of hiring a
high-productivity worker v, and decreasing in the cost of hiring a low-productivity worker k.

Example (Prediction Market). The DM participates in a prediction market based on a
binary state Θ = {θA, θB}. There are two assets, A and B, which pay 1 if the corresponding
state is realized and 0 otherwise. The assets are priced at qA and qB, respectively, with
qA + qB = 1.

The DM is endowed with wealth w and chooses how much of each asset to purchase,
(xA, xB). Without loss of generality we can restrict attention to choices xA, xB ≥ 0, with
xAxB = 0, and so the DM’s choice can be summarized by x = xA−xB. Therefore, the DM’s
wealth will be w+x(1− qA) if θA is realized and w−xqA if θB is realized. Assume the DM is
risk averse with log utility. The DM’s decision problem can then be described by the action
space A = R and utility

u(a, θ) =

{
ln(w + x(1− qA)) θ = θA

ln(w − xqA) θ = θB

Fix a model m, and denote pmA = pm(θA|s) as the model-induced posterior belief in θA.
Given this model, the DM chooses x to maximize expected utility U = pmA ln(w + x(1− qA))+

(1− pmA ) ln(w − xqA). First-order conditions imply the the optimum x =
(pmA−qA)

(1−qA)qA
w.

Note that under state θA, the DM’s ex-post optimal choice is to invest all of her wealth
into asset A, which yields a payoff of ln(wi/qA), and under state θB, the DM’s ex-post optimal
choice is to invest all of her wealth into asset B, which yields a payoff of ln(wi/(1− qA)).
The residual uncertainty associated with m is then

RD(pm(·|s)) = − ln(1− pmA )(1− pmA )− ln(pmA )pmA

That is, the decisiveness criterion predicts that for this decision problem, the agent will select
the model that minimizes posterior entropy, given the data.
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2.3 Additional Maintained Assumptions

Throughout this paper we will maintain two additional assumptions:

Assumption 3. ρ has full support over Θ.

Assumption 4. S has at least two elements.

Assumption 3 is without loss, as we can restrict attention to states Θ′ on which the DM’s
prior places positive probability. Assumption 4 amounts to a non-triviality assumption that
guarantees that learning can occur. Assumptions 3 and 4 guarantee that fixing a signal
realization s ∈ S, for every p ∈ ∆(Θ) there exists a model m (not necessarily unique) such
that implements beliefs p, with pm(·|s) = p.

3 Properties of Selection Under Decisiveness

In this section, I show that model selection under the decisiveness criterion is principally
characterized by a a preference for extreme models — those that cannot be expressed as
a mixture of other models she entertains. In a series of applications, I discuss how this
extremeness property can predict both existing and novel forms of overprecision and confir-
mation bias. I then discuss the relationship between the decisiveness criterion and related
model selection criteria.

3.1 Characterization of Model Selection Rule

For a decision problem D and signal s, let CD(M |s) ≡ arg maxm∈M ID(m|s) denote the
model choice correspondence under the decisiveness criterion. Because the regret function is
concave in beliefs for any decision problem, CD satisfies the following extremeness property:

Proposition 1. For m,m′ ∈ M , if m,m′ /∈ CD(M |s), then for any λ ∈ (0, 1), λm + (1 −
λ)m′ 6∈ CD(M |s). Furthermore, if AmD (s) and Am

′
D (s) are disjoint, then λm + (1 − λ)m′ 6∈

CD(M |s).

In words, under the decisiveness criterion, the DM tends to adopt extreme models — models
that cannot be expressed as a mixture of other models in M — because the decisiveness of a
composite model obtained by averaging two models cannot exceed the decisiveness of both
of those models. Furthermore, if those two models recommend different actions, then the
composite model delivers strictly lower decisiveness.

An immediate consequence of Proposition 1 is that the decisiveness criterion “biases”
the DM against model averaging: if the true model mT is an average over models in M ,
Proposition 1 implies that mT will never deliver the strictly highest decisiveness among the
models M∪{mT}, and that so long as at least two models in M recommend different actions,
the DM will never select the true model.
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For intuition as to why the DM finds such composite models unattractive, consider the
following example: the DM is trying to predict whether it will rain in an hour, and entertains
two models. m1 says that current humidity is the key predictor of rain, and m2 says that
cloud cover is the key predictor. Now consider a composite model m = 1/2m1 + 1/2m2 that
says that some mixture of humidity and cloud cover predict rain — the composite model
can be interpreted as saying that on any given day, humidity is the key predictor of rain
with 50% probability, and otherwise cloud cover is the key predictor of rain. Both m1 and
m2 provide a specific lens through which to interpret the data, whereas m leaves the DM
uncertain over which of these two interpretations to use. As such, the DM will find that one
of m1 or m2 provides more compelling guidance than the composite model m.

Proposition 1 also demonstrates a sense in which the decisiveness criterion generates
“coarse thinking” — the tendency for individuals to represent the full space of possibilities
as a coarse set of “categories” (Mullainathan, 2002; Mullainathan et al., 2008), and provides
predictions over what the categories individuals use. To illustrate this, following the frame-
work in Mullainathan (2002), suppose that the true information structure is governed by a
set of underlying models M̃ (the underlying types in Mullainathan (2002))3, and suppose
that the DM entertains the set of models M = Co(M̃), where Co(M̃) denotes the convex
hull of M̃ — this choice of M ensures that model selection per se does not generate coarse
thinking, since the DM is free to interpret the data according to any mixture over the under-
lying models. Proposition 1, however, implies that the DM will only ever interpret the data
according to a subset of M ; in particular, the DM will only ever select from the extreme
models in M̃ . While this subset of M is taken to be a primitive in Mullainathan (2002) —
the set of “categories”, in their terminology — the decisiveness criterion endogenizes the set
of categories the DM considers as a function of the underlying models M̃ . Note the key fea-
ture of this set of categories is that it contains only the “extremes”: in inferring effort from
output, a worker is categorized as either low or high-productivity, rather than of moderate
productivity; in inferring skill from returns, a fund manager’s performance is categorized as
the product of either luck or skill, rather than some mix of the two. Just as Mullainathan
(2002) motivates categorical thinking as a heuristic that streamlines decision-making, the
categories that the DM entertains under the decisiveness criterion are those that provide
strong decision-making guidance.

Finally, note that a model m can be expressed as a mixture of m′ and m′′ if and only if
the model induced belief pm can be expressed as a mixture of pm

′
and pm

′′
. This implies that

the preference for extreme models established in Proposition 1 results in the DM adopting
similarly extreme beliefs.

We now turn to characterizing CD. The extremeness property from Proposition 1 is a
key axiom in this characterization, along with an axiom that states that any model that

3To formalize this setting within my framework, consider a setting where nature draws the
model m from M̃ according to π ∈ ∆(M̃), where π is assumed to have full support. In this
case, given signal s, a Bayesian would use the model mT =

∑
m∈M̃ mπ(m|s), where π(m|s) =∑

θm(s|θ)p(θ)π(m)/
(∑

m∈M̃
∑
θm(s|θ)p(θ)π(m)

)
is the Bayesian posterior belief in model m given the

signal s.

14



induces certainty over the state must always be weakly preferred to other models.

Proposition 2. A model choice correspondence C satisfies

1. Sen’s α, β: If m ∈M ⊆M ′ and m ∈ C(M ′), then m ∈ C(M). Also, if m,m′ ∈ C(M),
M ⊆M ′ and m′ ∈ C(M ′) then m ∈ C(M ′).

2. Continuity: For all m ∈ M, {m′ ∈ M : m′ ∈ C({m,m′})} and {m′ ∈ M : m ∈
C({m,m′})} are closed.

3. Scale Invariance: For any m ∈ M, if m′ satisfies m′(s|θ) = λm(s|θ) ∀ θ, λ > 0, then
C({m,m′}) = {m,m′}.

4. Extremeness: For m,m′ ∈ M , if m,m′ /∈ C(M), then for any λ ∈ (0, 1), λm + (1 −
λ)m′ 6∈ C(M).

5. Certainty Preference: If m(s|θ) = 1 for any θ ∈ Θ and m ∈M , then m ∈ C(M).

if and only if there exists a decision problem D and signal s such that C(M) = CD(M |s) for
all M ⊆M.

Sen’s α, β reflects the fact that the decisiveness criterion induces a total order overM for
a given decision problem, while Continuity is a technical condition. Scale Invariance ensures
that models that induce the same posterior over outcomes are equivalent under the model
selection criteria. Scale Invariance has the following interpretation: if we think of m(s|θ) as a
measure of the strength with which θ explains the realized signal under m, the axiom implies
that that the attractiveness of a model depends only on relative comparisons between these
measures of explanatory strength across states θ.

See the discussion of Proposition 1 for an interpretation of Extremeness. Certainty Pref-
erence says that any model that induces certainty in an outcome must always be adopted, as
such a model eliminates residual uncertainty. Together, Extremeness and Certainty Prefer-
ence formalize the notion in which the decisiveness criterion privileges models that render the
decision-maker’s environment predictable. In what follows, I discuss a series of applications
illustrating how these properties of the decisiveness criterion can account for documented
patterns of belief updating, as well as produce new predictions.

3.2 Applications

3.2.1 Overprecision

A large experimental literature has documented that individuals exhibit overprecision — the
tendency to be excessively confident in the accuracy of one’s beliefs (Moore et al., 2015).
In a common experimental paradigm, subjects are asked to predict a binary outcome, and
state their belief that their prediction is correct. Across a variety of domains, subjects’ es-
timates of their own accuracy exceed the true hit rates. Similarly, studies eliciting subjects’
subjective confidence intervals around their estimates of continuous outcomes find that these
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confidence intervals tend to be too narrow.

A natural consequence of Proposition 1 is that the DM will exhibit overprecision in the
following sense — the DM will tend to overstate the informational content of her information.
Formally, fix any decision problem D and the realization of the signal s. Let mT denote the
true model that describes the DM’s actual experiment, and let m∅ denote an uninformative
model for which m(s|θ) is constant in θ. Proposition 1 implies the following result:

Corollary 1. Consider a model m satisfying λm + (1 − λ)m∅ = mT for λ ∈ (0, 1). If
ID(mT |s) > ID(m∅|s), then ID(m|s) > ID(mT |s).

Here, m can be interpreted as a model that overstates the informational content of the
true experiment mT , which is a mixture of m and noise. Corollary 1 states that to the extent
the DM entertains such models that overstate the informativeness of the their experiment,
those models will be favored over the true model, so long as the DM finds the true model
more decisive than her prior.

Example (Overprecision in Hiring). Suppose a hiring manager wishes to learn whether
a candidate is high-productivity (θh) or low productivity (θl), and holds a prior belief ρ.
The employer observes a signal s of productivity and chooses from a set of actions (e.g.
hiring/rejecting the candidate, bringing the candidate to a second interview, etc). Sup-
pose that ID(mT |s) > ID(m∅|s) — that is, the manager’s signal reduced her residual un-
certainty regarding which action to take. Suppose the manager also entertains a model
m that overstates the decisiveness of her signal in the sense described earlier: m satisfies
λm+ (1− λ)m∅ = mT for λ ∈ (0, 1); corollary 1 implies that the hiring manager will adopt
m over the true model mT . Given the binary state setting, the implications for the man-
ager’s posterior beliefs are straightforward: if under the true model, s is good news about
productivity, with ρ(θh) < pmT (θh|s), then m induces yet a higher belief in productivity, with
pm(θh|s) > pmT (θh|s); similarly if under the true model s is bad news about productivity,
then m induces yet a lower belief in productivity. In other words, the manager overstates
her ability to discern high-productivity candidates from low-productivity candidates.

To relate this example to the two-alternative forced-choice paradigm used in experimen-
tal tests for overprecision, suppose that the manager’s decision problem consists of a binary
prediction j regarding the productivity of the candidate, as well as an estimate q of the
probability that the prediction will be correct. Formally, we have A = {h, l} × [0, 1], with
u((j, q), θ) = u1(j, θ) + u2((j, q), θ), where

u1(j, θ) =

{
1 θj = θ

0 otherwise

u2((j, q), θ) =

{
−(1− q)2 θj = θ

−q2 otherwise

That is, given belief p, the manager predicts the type she believes is more likely, and reports
the probability that her prediction will be correct.
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Now suppose that ρ(θh) = 0.5, and that as before, the DM entertains the true model mT , as
well as the model m as defined above. Here, we have ID(mT |s) ≥ ID(m∅|s) for all s, which
implies that ID(m|s) ≥ ID(m∅|s). As before, the manager overreacts to her signal about
productivity.

In particular, assume that some signal s is good news about productivity — the manager pre-
dicts productivity to be j = h after observing s. Under the true model, the probability that
manager’s prediction is correct is given by pmT (θh|s), but since the manager finds m more de-
cisive than mT , the manager instead reports a confidence level of q = pm(θh|s) > pmT (θh|s).
Analogously, when s is bad news about productivity, the manager reports an inflated confi-
dence level in her prediction that j = l of q = pm(θl|s) > pmT (θl|s). Therefore, when faced
with with a population of candidates, the manager is systematically overconfident in her
predictions about productivity. N

Note that a key condition for overprecision is that ID(mT |s) > ID(m∅|s): under the
true model, the realized signal s must (weakly) reduce the DM’s residual uncertainty over
the optimal course of action. In other words, the DM is more likely to exhibit overpreci-
sion in situations where she is initially uncertain over the optimal course of action. For
instance, if we suppose that the hiring manager in the previous example has binary actions
{hire, don’t hire}, the manager will tend exhibit overprecision when her prior beliefs leave
her close to indifferent between hiring and not hiring.

In contrast, consider the case where ID(mT |s) < ID(m∅|s) the signal increases the man-
ager’s residual uncertainty over the optimal course of action. For instance, it may be the case
that the manager’s prior beliefs strongly recommend that she hire the candidate, but she
receives a signal to the contrary that would push her to greater uncertainty over whether to
hire, under mT . In this case, the decisiveness criterion instead predicts that the manager may
seek models that minimize the informational content of her signal, a form of confirmation
bias. The next section will study exactly this implication of the decisiveness criterion.

3.2.2 Confirmation Bias

Consider a setting with binary states: Θ = {θl, θh}; fix the decision problem D and the
signal realization s. Say that m is in favor of θh if m(s|θh) ≥ m(s|θl), and that m is in favor
of θl if m(s|θh) ≤ m(s|θl). Also, say that a model m is interior if pm(·|θ) 6= δθ for any state
θ. The DM then exhibits confirmation bias in the following sense:

Corollary 2. For any interior m in favor of θh, there exists a threshold prior belief p >
0 such that if ρ(θh) ≤ p, ID(m′|s) ≥ ID(m|s) for any m′ in favor of θl. Furthermore,
for ρ(θh) ≤ p and any m′′ satisfying m′′(s|θh)/m′′(s|θl) ≤ m(s|θh)/m(s|θl), we also have
ID(m′|s) ≥ ID(m′′|s) for any m′ in favor of θl.

In words: given model m providing evidence towards one conclusion, there exists a range of
prior beliefs under which the DM prefers to adopt an alternative model that interprets the
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signal as evidence for the opposing conclusion. Furthermore, this range of prior beliefs is
decreasing in the strength of the evidence under m.

Example (Prior-Based Polarization). Following the classic experimental setup of Darley
and Gross (1983), suppose that there are two subjects whose priors disagree about the state
Θ = {θh, θl} (in their experiment, the reading level of a student), but who are otherwise iden-
tical. In particular, we have ρA(θh) > ρB(θh): subject A believes θh is more likely whereas
subject B believes θl is more likely.

Suppose that both subjects receive the same signal s (results from an ability test), where
there is uncertainty over how to interpret s (e.g. uncertainty over how difficult or diagnostic
the test is): both subjects entertain models in favor of θh and in favor of θl. Assume that the
evidence does not completely resolve the debate; all models the DMs entertain are interior.

Corollary 2 states that there exists p, p ∈ (0, 1) such that if ρA(θh) > p and ρB(θh) < p,
subject A will adopt a model in favor of θh and subject B will adopt a model in favor of θl
— that is, after observing the same common signal, beliefs become increasingly polarized.
Darley and Gross (1983) and similar studies (Lord et al., 1979; Plous, 1991) document ex-
actly this kind of belief polarization along prior beliefs. N

The decisiveness criterion not only rationalizes the evidence for confirmation bias dis-
cussed above, but also produces predictions regarding the when the bias is likely to arise, as
the example below illustrates.

Example (Confirmation Bias in Hiring). Consider again the hiring manager example from
the discussion of overprecision. Suppose that the hiring manager faces the decision problem

θh θl
hire v −k
reject 0 0

and that under the true model, r ≡ mT (s|θh)/mT (s|θl) > 1; under the true model, s is good
news about the productivity of the candidate, where r denotes the diagnostic strenght of this
signal. Note that residual uncertainty is increasing in p(θh) for p(θh) ∈ [0, k/(k+ v)]. Bayes’
rule implies that so long as ρ(θh) <

k
rv+k

, pmT (θh) < k/(k + v), and so for ρ(θh) <
rk
v+rk

, the
hiring manager prefers the uninformative model m∅ over the true model mT . Intuitively,
for ρ(θh) low enough, the hiring manager is confident that rejecting the candidate is the
right call, and so will ignore a disconfirmatory signal that induces greater uncertainty over
whether she should hire. N

This analysis demonstrates two key predictions that the decisiveness criterion makes re-
garding confirmation bias. First, the decisiveness criterion predicts limits to confirmation
bias: if under the true model the disconfirmatory signal is sufficiently informative — that
is, if r is large — the DM will find the true model more decisive than the uninformative
model, and so will not exhibit confirmation bias. In fact, the analysis on overprecision im-
plies that in such cases the DM will instead exhibit over-inference — to the extent there
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are interpretations of the data that overstate the informational content of the signal, the
DM will select these interpretations. These limits to confirmation bias depend in an in-
tuitive way on the DM’s prior: the more certainty afforded by the DM’s prior, the greater
scope of disconfirmatory models the DM will find less decisive than the uninformative model.

The second prediction is that the DM’s decision problem determines the regions of prior
beliefs where confirmation bias operates. This is clearly illustrated in the hiring manager
example discussed above: fixing the signal strength, parameterized by r, the DM exhibits
confirmation bias for priors in the region ρ(θh) ∈ [0, k

rv+k
]. We can see that as v increases —

that is, as hiring the candidate becomes a more attractive option — greater certainty in the
DM’s prior is required to sustain confirmation bias. Contrast this to approaches to modeling
confirmation bias, such as Rabin and Schrag (1999), in which the region of priors in which
the bias is operates is exogenously determined — typically ρ ∈ [0, 0.5). Under my model, a
disconfirmatory signal is not necessarily one that moves the DM’s beliefs towards 50-50, but
rather one that reduces DM’s confidence in the course of action they would have chosen in
the absence of the signal.

Taken together, the results on overprecision and confirmation bias imply that the DM’s
beliefs will exhibit the following pattern, to the extent the DM entertains models that both
overstate and understate the decisiveness of her signal: if the DM is initially uncertain
(with respect to her available courses of action), she will exhibit overreaction to information.
However, if the DM’s prior is sufficiently concentrated in one state, she will tend to underreact
to disconfirmatory news while continuing to overreact to confirmatory news. As such, the
decisiveness criterion predicts the tendency of individuals to both “jump to conclusions” —
evaluators form strong impressions based on unreliable diagnostic tools, noise traders act on
illusory correlations in price data, and forecasters are overstate the accuracy of their estimates
— and, once strong convictions have been formed, to explain away disconfirmatory evidence:
stereotypes tend to persist even in the face of counterexamples, and initial disagreement can
become increasingly polarized in light of new information.

3.2.3 Investor Sentiment

The DM is trying to predict whether a stock price will increase (θh) or decrease (θl). The DM
holds the prior belief ρ(θh), corresponding to the DM’s belief regarding the drift the stock
price exhibits on average, and observes the history of price changes, s = (st−1, st−2, ..., s0)
where for simplicity we assume each st is binary, with st = 1 corresponding to a price increase
and st = 0 corresponds to a price decrease. Denote s̃t = (st, st−1, ..., s0) as the history of
price changes leading up to date t. Suppose that under the true model, stock prices follow
a random walk: for all s, mT (s|θh) = mT (s|θl).

Suppose that the DM entertains the true model mT , as well as models under which the
stock price is predictable on the basis of previous returns. For instance, following Barberis
et al. (1998), the DM may entertain a “mean-reverting” model in which price increases are
more likely to be followed by price decreases: m((st−1 = 1, s̃t−1)|θh) < m((st−1 = 1, s̃t−1)|θl)
for all s̃t−1, or an “extrapolative” model in which price increases are more likely to be followed
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by further increases: m((st−1 = 1, s̃t−1)|θh) > m((st−1 = 1, s̃t−1)|θl) for all s̃t−1. When does
the decisiveness criterion predict that these latter models, in which prices are predictable on
the basis of the past, will be selected over the true model?

Proposition 1 implies that regardless of the DM’s decision problem, so long as M contains
models m,m′ for which pm(θh|s) < pmT (θh|s) < pm

′
(θh|s), the DM will not adopt the true

model (ignoring ties in the decisiveness ranking). In particular, this implies that if the DM
entertains both mean-reverting and extrapolative models of stock prices, she will not adopt
the true model over either of these two classes of models, regardless of the price history and
the decision problem. For intuition behind this prediction, suppose that the DM chooses
between actions A = {buy, sell}, where buy delivers a higher payoff than sell for θ = θh,
and vice versa for θ = θl, and suppose that in the previous period a gain was realized (the
same intuition holds for the case for st−1 = 0). Note that if the DM preferred buy under the
true model, the extrapolative model provides yet stronger evidence in favor of buy, and if
the DM instead preferred sell under the true model, the mean-reverting model provides yet
stronger evidence in favor of sell ; in either case, the DM adopts an alternative model over
the true model. Proposition 1 states that this same intuition extends to an arbitrary set of
actions and payoffs.

Whereas Barberis et al. (1998) defend their assumption that the DM does not entertain
the true random walk model by appealing to constraints on the speed of learning or errors
in Bayesian inference over the space of models, my framework highlights a distinct force
that drives the DM to seek other models over the true model — in particular, that the DM
perceives the alternative models as providing better guidance than the true model.

What does the decisiveness criterion have to say about when the DM adopts the mean-
reverting vs. the extrapolative model? A set of stylized facts reviewed in Barberis et al.
(1998) suggest that prices underreact to news in normal times, but tend to overreact to news
following periods of sustained positive or negative news, consistent with investors adopting
an extrapolative model following sustained price increases or decreases, and a mean-reverting
model otherwise. The decisiveness criterion can rationalize these patterns if we expand the
set of extrapolative models to include those where the informational content of a price change
st−1 is increasing in the number of consecutive previous price changes that agree with st−1. In
other words, under such an model, the DM extrapolates more in response to a price change
when it follows a series of price changes in the same direction. Suppose the DM entertains
such an extrapolative model mE, as well as a mean-reverting model mR, satisfying

pmR(θh|(st−1 = 1, s̃t−2)) < pmT (θh|(st−1 = 1, s̃t−2)) < pmE(θh|(st−1 = 1, s̃t−2))

pmR(θh|(st−1 = 0, s̃t−2)) > pmT (θh|(st−1 = 0, s̃t−2)) > pmE(θh|(st−1 = 0, s̃t−2))

for all s̃t−2. Suppose that st−1 = 1. By Extremeness and Certainty Preference, residual un-
certainty RD(·) is single-peaked in pm(θh|s). This implies that there does not exist a decision
problem for which an increase in pmE(θh|s) results in the DM switching models from mR to
mE, whereas there exists decision problems where the contrary is true. Therefore, the DM
will tend to adopt the extrapolative model following a price increase when it follows a series
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of price increases, and the same logic extends to price decreases.

As Barberis et al. (1998) demonstrate, a fit-based model selection criteria can rationalize
these patterns in model selection: the extrapolative model becomes more likely in light
of sustained price increases and decreases, and the mean-reverting model is becomes more
likely when prices are not trending. My framework provides an alternative channel that could
drive these patterns: in times of sustained price changes, the extrapolative model provides
stronger guidance to investors, whereas when prices oscillate, the extrapolative model is less
conclusive and so investors adopt the mean-reverting model.

3.3 Comparison to Alternative Selection Criteria

Here, I illustrate the differences between the decisiveness criterion and related model selection
criteria.

3.3.1 Decisiveness vs. Parsimony

Given the complexity of information decision-makers are often confronted with, it is plausi-
ble that individuals may seek parsimonious models of the world to organize data and make
decisions, consistent with the view that individuals are “cognitive misers” (Kahneman and
Tversky, 1973). Does the decisiveness criterion generate a demand for parsimonious models?
Given the difficulty of formalizing a general notion of model complexity, I instead outline key
intuitions regarding how the decisiveness criterion relates to a demand for model parsimony
through a simple setting, first analyzed in Hong et al. (2007).

The DM is trying to predict whether the stock price will increase (θh) or decrease (θl) in
the following period, and observes two sources of news: s = (sA, sB), where si ∈ {0, 1} for
i = A,B. Motivated by the view that individuals are “cognitive misers” and so seek simpli-
fied models of the world, Hong et al. (2007) analyze a situation in which the DM selects one
of two models, each of which uses only a single news source (either A or B) to predict the
stock price. In this example, I study when the decisiveness criterion generates demand for
such parsimonious models.

Formally, say that model m ignores news source i if for any realization of s−i, posterior
beliefs are constant in the value of si: this holds only if for all s−i,

m(si = 1, s−i|θh)
m(si = 0, s−i|θh)

=
m(si = 1, s−i|θl)
m(si = 0, s−i|θl)

First, note that under the unrestricted model spaceM, given any signal realization, a model
that ignores source i can implement any posterior belief, as can a model utilizing both news
sources. As a result, without further structure on the model space, both classes of models
are equally privileged under the decisiveness criterion. As such, we impose the following
structure on M : suppose that M contains the set of models m satisfying the following
conditions:
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1. Under m, the sA, sB are independent conditional on θ. Let m(si|θ) =
∑

s−i
m(si, s−i|θ).

2. m(si|θ) ∈ [qi, qi] ⊂ [0, 1] for all θ, i.

3. m(si = 1|θh) ≥ m(si = 1|θl) for i = A,B.

Condition 2 ensures that that no model completely eliminates residual uncertainty, and Con-
dition 3 implies an ordering on news: si = 1 implies good news about the stock price, whereas
si = 0 implies bad news. Under these conditions, the signal realization crucially determines
whether the DM selects a model that ignores a news source, as the following cases illustrates.

Case 1: Mixed signals. Suppose that sA = 1, sB = 0 (the analysis is identical for the
case where sA = 0, sB = 1). In this case, the set of models that the DM adopts, for any
decision problem, are models that ignore either source A or B. To see this, note that any
m that maximizes pm(θh) must ignore source B, the source delivering bad news; similarly,
any m minimizing pm(θh) must ignore source A, the source delivering good news. Proposi-
tion 1 implies that only models implementing these extreme beliefs will be selected under
the decisiveness criterion (ignoring ties in the decisiveness ranking) for any decision problem.

Case 2: Aligned signals. Suppose that sA = 1, sB = 1 (the analysis is identical for the
case where sA = 0, sB = 0). In this case, the set of models the DM adopts, for any decision
problem, are models that either ignore both sources, or take both sources into account. The
logic is similar to the case above: any m that maximizes pm(θh) must take both sources into
account, and any m minimizing pm(θh) must ignore both sources.

Under the decisiveness criterion, the DM does not value parsimony per se, as the contrast
between the two cases illustrates: the DM adopts the simplified models considered in Hong
et al. (2007) only when the two sources produce conflicting news. Under this account, the DM
dislikes incorporating additional dimensions into her model to the extent these dimensions
increase her residual decision uncertainty. As such, to the extent that news sources are
correlated under the true model and therefore are more likely to agree, the DM will more
often adopt models that take these multiple sources into account. However, to the extent
news sources are independent and therefore more likely to disagree, the DM will tend to
adopt models that selectively attend to certain sources.4

3.3.2 Decisiveness vs. Blackwell Ordering

Note that in my framework, each model m is a Blackwell experiment (Blackwell, 1953), and
so can be ranked according to the Blackwell ordering, a measure of the informativeness of an
experiment. Formally, m dominates m′ in the Blackwell order if for all priors ρ and decision
problems D = (A, u),∑

s

∑
θ

max
a∈A

u(a, θ)pm(θ|s)pm(s) ≥
∑
s

∑
θ

max
a∈A

u(a, θ)pm
′
(θ|s)pm′(s)

4Note that such models need not be “simple”; a model that assigns differing diagnostic weights to each
news source is arguably more complex than a model that treats each source as identical, and yet will tend
be more decisive in the case of mixed signals.
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where pm(s) =
∑

θm(s|θ)ρ(θ) gives the likelihood of observing s under model m.

While both the decisiveness criteria and the Blackwell order capture notions of the in-
formativeness of a model, note that the decisiveness criteria does not respect the Blackwell
order. To see why not, as Section 3.2.2 on confirmation bias demonstrates, a completely
uninformative model m∅ may be more decisive than an informative model m, whereas m
necessarily dominates m∅ in the Blackwell order. The key distinction driving the discrep-
ancy is that the decisiveness criterion is an ex-post notion of informativeness evaluated for
a given signal realization, whereas the Blackwell order is an ex-ante notion. Indeed, it can
be shown that if m dominates m′ in the Blackwell order, then the average decisiveness of m
must be greater than that of m′:

∑
s ID(m|s)pm(s) ≥

∑
s ID(m′|s)pm′(s).5 As such, even if

m is more decisive than m′ on average, for some signal realizations it may be the case that
m′ is more decisive than m.

4 Selection as a Function of Payoffs and Objectives

In this section, I study how model selection under the decisiveness criterion varies with the
objectives of the DM. In a series of applications, I discuss how these comparative statics can
generate documented context effects and attribution errors, as well as predict novel forms of
belief polarization.

4.1 Maximal Payoff Profile Improvements

Consider two decision problems D = (A, u),D′ = (A′, u), where A′ = A ∪ {a′}. Say that D′
improves the maximal payoff profile of D if u(a′, θ) > maxa,∈A u(a, θ) for some θ — that is,
D′ is formed from D by adding an action a′ that improves the maximal payoff for at least one
outcome. For such payoff profile improvements, let ∆uθ = maxa∈A′ u(a, θ)−maxa∈A u(a, θ)
denote the improvement in the maximal payoff associated with state θ when moving from
D, to D′.

The following gives a condition on how model selection must respond to such payoff
profile improvements, in the case where the payoff profile-improving action a′ is not chosen:

Proposition 3. Fix the menu of modelsM . SupposeD′ improves the maximal payoff profile
of D via a′. Then, for any m ∈ CD(M |s) and m′ ∈ CD′(M |s), if m′ does not recommend a′

from D′, then m′,m must satisfy
∑

θ p
m(θ|s)∆uθ ≤

∑
θ p

m(θ|s)∆uθ.

To parse this condition, consider the case where a′ improves the maximal payoff associ-
ated with a single state θ. In this case, the proposition states that pm(θ|s) < pm

′
(θ|s): any

change in models must result in lower posterior beliefs in the state for which a′ improves the
maximal payoff. When a′ improves the maximal payoff associated with multiple states, the
proposition states that any change in models must result in a lower payoff-weighted average

5In Section 7.2, I analyze precisely this formulation of ex-ante decisiveness, and contrast its predictions
with the ex-post formulation.
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of posterior beliefs in the improved states. For intuition behind this result, recall that the
decisiveness criterion favors models that concentrate beliefs in states under which the rec-
ommended action will be ex-post optimal. As a result, the addition of an unchosen action
that increases the maximal payoff achievable for a set of states reduces the decisiveness of
models that induce high beliefs in those states.

This comparative static on the DM’s choice of model selection has implications for the
DM’s choice of action: the addition of an unchosen action a leads the decision-maker to select
models that recommend against choosing a — as well as similar actions. This implication is
most clear in the case of binary states, as summarized in the corollary below:

Corollary 3. Consider a binary state setting, where Θ = {θh, θl}. Suppose D′ improves the
maximal payoff associated with θh of D via a′. If a′ is not among the actions chosen in D′,
then for any action a chosen from D and any action a′′ chosen from D′, u(a, θh) ≥ u(a′′, θh)
and u(a, θl) ≤ u(a′′, θl).

This prediction can account for findings in the experimental literature in which the addition
of an unchosen action reduces subjects’ propensity to choose similar actions, or equivalently
increases their propensity to choose dissimilar actions.

Example (Reason-Based Choice). Consider the following experimental finding from Tver-
sky and Shafir (1992). Subjects decide whether to buy a CD player. In the first treatment
(the low-conflict treatment), subjects can choose to either buy a mid-range CD player or
to defer the purchase. In the second treatment (the high-conflict treatment), subjects can
choose to either buy a mid-range CD player, buy a top-of-the-line CD player, or defer the
purchase. Their finding is that the proportion of subjects choosing to defer the purchase
is greater in the high-conflict treatment vs. the low-conflict treatment. Tversky and Shafir
(1992) interpret these findings as suggesting that in the high-conflict treatment, subjects
looking to buy a CD player need to weigh the lower price of the midrange model against
the higher quality of the top-of-the-line player, a difficult tradeoff that makes deferring the
purchase an easier decision to justify.

To translate this setting into the framework, normalize the DM’s payoff from deferring
to 0, and suppose that the DM’s payoff from purchasing a CD player is θq− k, where q and
k are the quality and price of the player, and θ parameterizes how much the DM weighs
quality over price. Suppose that the DM is uncertain about the value of θ, and suppose
that this state is binary: θ ∈ {0, 1}. Let (ql, pl) and let (qh, ph) denote the price and quality
of the mid-range and top-of-the-line CD player, respectively, and suppose that kh > kl and
vh > vl > 0, where vh ≡ qh− kh and vl ≡ ql− kl denote the net quality of the products. The
decision problems corresponding to the low-conflict and high conflict treatments are

Dlow : Low-conflict
θ = 1 θ = 0

midrange vl −kl
defer 0 0

Dhigh : High-conflict
θ = 1 θ = 0

top-of-line vh −kh
midrange vl −kl
defer 0 0

24



Suppose further that kl/(vl + kl) < kh/(vh + kh) — that is, conditional on choosing to pur-
chase a CD player, the choice is not obvious — there exists a range of beliefs for which the
DM prefers midrange over top-of-line, and vice versa.

To begin, fix a signal realization s; we will first show there exists some set of models
M such that if the DM entertains M , she will choose midrange in the low-conflict treat-
ment and defer in the high conflict treatment6. First note that by Proposition 1, we can
restrict attention to the extreme models m, m satisfying m ∈ arg maxm∈M pm(θ = 1|s)
and m ∈ arg minm∈M pm(θ = 1|s), respectively; Let p = maxm∈M pm(θ = 1|s) and p =
minm∈M pm(θ = 1|s) denote the respective extreme posteriors.

Suppose that M is such that p < kl/(vl + kl), kl/(vl + kl) < p; the DM’s choice of model
is material for whether she buys a CD player or not. Proposition 3 then implies that if
p < kh/(vh + kh) — that is, no model recommends top-of-line — the addition of top-of-the-
line must increase the decisiveness of m relative to m. It can be shown that for some M ,
this leads the DM to switch from m in the low-conflict treatment to m in the high-conflict
treatment, which in turn induces a switch from midrange to defer 7.

Therefore, adding an unchosen alternative, the top-of-the-line player, can cause the DM
to switch from the choosing the midrange player to deferring the decision via a change in
models from m to m. The addition of the top-of-the-line player makes m a less satisfying
justification for the DM’s decision, as m now leaves the DM uncertain about which player to
buy, causing the switch to m, which makes a comparatively more decisive recommendation
that the DM should defer the purchase.

Now, note that if the DM chooses defer under in the low-conflict treatment, she must also
choose defer in the high-conflict treatment. To see this, let m be the model selected under
Dlow and take any m′ ∈M that does not recommend defer from Dhigh; let pm = pm(θ = 1|s),
pm
′
= pm

′
(θ = 1|s) denote the respective model-induced posteriors. By assumption, we have

IDlow(m|s) > IDlow(m′|s) which implies pmvl < (1 − pm′)kl; this, along with the maintained
assumptions on k and l, implies that IDhigh(m|s) > IDhigh(m′|s). In line with the intuition
behind Proposition 3, the addition of top-of-line penalizes models that place higher weight
on the improved state θ = 1, which precludes a switch from midrange to defer.

Therefore, for any signal realization, the DM may switch from midrange in the low-
conflict treatment to defer in the high conflict treatment, but must choose defer in the
high-conflict treatment if she chose defer in the low-conflict treatment. As such, fixing any
probability distribution governing over signals, the proportion of subjects choosing defer in
the high-conflict treatment is higher compared to that of the low-conflict treatment, in line

6An underlying signal structure in this application could involve, for example, the models specifying
different interpretations of an advertisement the DM received regarding the CD players.

7The set of p and p that yield this choice pattern is characterized by the condition p ∈[
(1−p)kl
vh

, (1−p)kl+p(vh−vl)vh

]
which is non-empty given the maintained assumptions p < kl/(vl + kl), kl/(vl +

kl) < p < kh/(vh + kh)
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with the experimental findings.8 N

4.2 Reductions in Action Value

Consider two decision problems D = (A, u),D′ = (A, u′). Say that action a∗ ∈ A is uniformly
worse in D′ relative to D if u′(a∗, θ) ≤ u(a∗, θ) for all θ and u′(a, θ) = u(a, θ) for all θ, a 6= a∗.
The following gives a condition for how the model must change when an action is made
uniformly worse:

Proposition 4. Suppose a∗ is uniformly worse in D′ relative to D. If m recommends a∗

from D′ and m′ does not recommend a∗ from D then m /∈ CD(M |s),m′ ∈ CD(M |s) =⇒
m /∈ CD′(M |s).

In words, the decisiveness of any model that recommends a∗ must decrease relative to
a model that did not recommend a∗ when a∗ is made uniformly worse. Intuitively, as a∗ is
made uniformly worse, a model that recommends a∗ provides a weaker justification toward
its recommended action than does any model recommending a different action.

Proposition 4 implies that the more predisposed the DM is to taking an action, the more
they will tend to adopt interpretations of the data that recommend that action, as opposed
to interpretations recommending other actions. Note the key distinction between this pre-
diction and that of a model selection criterion based on optimism, in which individuals seek
interpretations of the data that increase the perceived value of their chosen course of action:
a model can produce a recommendation for an action a by increasing the perceived value of
a relative to other actions, without increasing the perceived absolute value of a. As such, a
DM who is predisposed toward a will find a model decisive if it reduces the attractiveness of
competing actions, even if it does not result in a higher perceived value of the chosen action
a. In this manner, the decisiveness criterion can predict patterns that are puzzling from the
perspective of a optimism-based criterion, such as individuals adopting interpretations that
downplay the credibility of evidence suggesting the safety of a new vaccine, or point to the
ineptitude of a political candidate. Such models do not induce optimism but may induce
a sense of certainty over the correct course of action, if for instance the decision-maker is
choosing whether to take the vaccine or choosing who to vote for. The following example
illustrates the differences between the decisiveness criterion and selection criterion based on
optimism.

Example (Wishful Thinking vs. Decisivness). Consider the following experimental results
from Bastardi et al. (2011). They study a group of soon-to-be parents with similar priors —
all believe that home care is superior to day care. However, parents face different incentives:
some intended to use home care, whereas others intended to use day care. When shown with

8To formally adapt the model to the analysis of choice probabilities, let µ(s) denote the objective distribu-
tion of signals and let SaD denote the set of signals in s under which the DM chooses a in decision problem D;
to avoid dealing with ties in the definition of choice probabilities, assume that AmD and arg maxm∈M ID(m|s)
are singleton sets. The probability of choosing a in decision problem D is then Q(a,D) ≡

∑
s∈Sa

D
µ(s). My

results indicate that that Q(defer,Dlow) ≤ Q(defer,Dhigh) for any set of models M , where the inequality is
strict for some M .
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a study providing evidence in favor of the effectiveness of day care, parents who intended to
use home care rated the credibility of the study as low, whereas parents who intended to use
day care rated the credibility of the study as high. Can wishful thinking explain these results?

Here, the state is given by θ = (θh, θd), where θh = 1 (θh = 0) corresponds to home care
being effective (not effective), and likewise for θd, which corresponds to the effectiveness of
day care. For simplicity, suppose that DMs believe that the quality of day care and home
care is independent. In line with the study, suppose that DMs hold common priors over the
state. DMs face the menu A = {ah, ad}, a choice between home care and day care. Assume
that the payoff from choosing each type of care is greater if that type of care is effective:

u(ah, (θ
h = 1, θd)) > u(ah, (θ

h = 0, θd)) for all θd

u(ad, (θ
h, θd = 1)) > u(ad, (θ

h, θd = 0)) for all θh

and that the payoff from choosing a given type of care is independent of whether the alter-
native is effective or not: u(ah, (θ

h, θd)) is constant in θd and u(ad, (θ
h, θd)) is constant in θh.

To rationalize the baseline heterogeneity in choice observed in the experiment, suppose that
the DMs who initially choose home care find day care uniformly more more costly than DMs
who initially choose day care.

Now suppose, as in the experiment, that the DM sees a study s providing evidence that
day care is effective. The DM entertains two models; either the study is credible (m1) or
not (m2), where pm1(θd = 1|s) > pm2(θd = 1|s) = ρ(θd = 1|s); assume that the study is
uninformative about the effectiveness of home care under both m1 and m2.

First consider the inferences of DMs who chose day care at baseline. Under either model,
they would choose day care, but m1 induces lower regret associated with that choice, and so
these DMs select m1; they rate the study as credible. Note that a model of wishful think-
ing would make identical predictions in this case; an agent committed to choosing day care
would want to believe that day care is effective.

Now consider the inferences of the DMs who chose home care at baseline. According to
Proposition 4, these DMs find m1 less decisive relative to m2 than do DMs who choose day
care at baseline. These DMs are therefore inclined to select m2; they rate the study as not
credible. Note that wishful thinking cannot explain this finding: an agent who simply wishes
to be optimistic would have no motive to downplay the credibility of good news regarding an
option they don’t plan to choose (and would in fact avoid doing so insofar as there are costs
to warping one’s beliefs, as in Caplin and Leahy (2019)); the decisiveness criterion, however,
generates exactly this kind of motive. N

4.2.1 Application: Social Attributions

Consider a set of stylized facts from the psychology literature: when making inferences
about others’ dispositional traits on the basis of their behavior, individuals tend to ignore
the confounding role of situational factors in determining behavior, thus committing the
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so-called fundamental attribution error (Ross, 1977). However, there are exceptions to this
behavior — in particular, when forming inferences about ingroup members on the basis
of poor behavior, individuals commit the opposite error — they explain away the behavior
as the result of situational factors, as opposed to dispositional traits (Vonk and Konst, 1998).

The decisiveness criterion can rationalize these patterns as a product of differences in the
decision-makers inferential goals when making inferences about a stranger vs. an ingroup
member. Concretely, suppose that the DM is uncertain whether an actor is low-type (θl) or
high-type (θh). The actor is either a stranger or ingroup member, corresponding to the deci-
sion problems Dst and Din respectively, and in either case, the DM must decide whether to
interact with the actor: A = {interact, don’t interact}, where where interact delivers higher
payoffs in θh and don’t interact delivers higher payoffs in θl. Suppose that the DM has a
preference for interacting with an ingroup member as opposed to a stranger – that is, inter-
act is uniformly improved in Din relative to Dst, whereas the payoffs of don’t interact are
identical across both decision problems.

In either case, the DM observes a signal s, the actor’s behavior, and entertains the fol-
lowing models: under m, behavior is informative of the actor’s type; under m∅, behavior is
explained away by situational factors, and is thus uninformative about type; and the true
model mT = λm+ (1− λ)m∅ reflects uncertainty over whether the actor’s behavior was the
result of situational factors or their underlying type.

First consider the DM’s inferences over the stranger. Here, Corollary 1 naturally gener-
ates a tendency towards the fundamental attribution error: so long as so long as IDst(mT |s) >
IDst(m∅|s) — that is, as long as the DM is initially uncertain over whether or not to interact
with the stranger, the DM will select m, thereby attributing the stranger’s behavior entirely
to their type, and neglecting the confounding role of the situation.

In contrast, consider the DM’s inferences over the ingroup member, in the situation
where the ingroup member displayed poor behavior — pm(θh|s) < ρ(θh), and that for this
signal realization, m recommends that don’t interact, whereas m∅ recommends interact.
Here, Proposition 4 states that the DM’s stronger preference for interacting with the in-
group member increases the decisiveness of m∅ relative to m when faced with an ingroup
member as compared to a stranger; if this difference in preferences is sufficiently large, the
DM will select m∅, and explain away the behavior with situational factors, thus committing
a “reversal” of the fundamental attribution error. Here, the DM’s predisposition towards
interacting with the ingroup member increases the decisiveness of models that reinforce this
course of action, as opposed to models that suggest otherwise. The decisiveness criterion
also predicts an asymmetry in attribution documented in (Vonk and Konst, 1998), where
the fundamental attribution error only reverses for inferences over negatively-valenced be-
havior of ingroup members. In particular, if the ingroup member instead exhibited positive
behavior, with pm(θh|s) > ρ(θh), the DM will instead find m more decisive.

While the attribution patterns discussed above are consistent with a form of ingroup bias
in which the DM seeks to interpret information in a way that is favorable towards the in-
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group, the decisiveness criterion makes additional predictions that cannot be rationalized by
such a bias. Under the decisiveness criterion, the DM seeks to explain away poor behavior by
ingroups not because she has an innate preference for holding favorable beliefs towards the
ingroup, but because this interpretation helps reduce her uncertainty over who to interact
with; as such, the DM’s inference will be sensitive to changes to the payoffs from interacting
with the ingroup member.

For example, consider a decision problem D′st in which the cost of not interacting with
the stranger is higher than in Dst — that is, don’t interact is uniformly worse in D′st relative
to Dst.9 Proposition 4 predicts that such a shift in payoffs can induce the DM to explain
away negative behavior in D′st just as she does in Din, thereby bringing inferences in both
decision problems in line with each other.10

This analysis can be similarly applied to study discrimination in hiring decisions, and
in this setting, predicts a novel channel through which taste-based discrimination can drive
belief-based biases against minority applicants. The logic is analogous to the example above
— if a hiring manager incurs greater costs to hiring a minority applicant due to discriminatory
tastes, they will have a greater inclination against adopting positive interpretations of the
data that would recommend a decision to hire — such interpretations lead the manager to
greater decision uncertainty. This logic similarly suggests channels for interventions in such
a setting — since managers’ inferential biases are not due to the minority status of applicants
per se, but rather due to the increased costs of hiring such applicants, the model predicts
that providing minority hiring incentives can reverse this particular inferential bias.

4.2.2 Application: Belief Polarization

As alluded to in the previous section, Proposition 4 highlights a channel for differences in
DMs’ objectives to lead to belief polarization. To illustrate, consider a society of DMs who
have identical priors over the state, Θ = {θh, θl}, and choose from the same set of actions
A. There are two types of DMs, type-1 and type-2, characterized by their utility functions
u1, u2. For type-1 DMs, denote by a and a the actions that deliver the highest payoffs under
θh and θl, respectively, and assume that a 6= a, so that the DM does not have a dominant
course of action. Denote (v,−k) = (u1(a, θh), u1(a, θl)) and (v,−k) = (u1(a, θh), u1(a, θl)).
Suppose that the utility of type-2 DMs satisfies (u2(a, θh), u2(a, θl)) = (v − c,−k − c), with
u2 = u1 otherwise. In words, type-2 DMs find it more costly to take a relative to type-1 DMs.

Suppose that both types of DMs entertain the same set of models M and recieve a com-
mon signal s. Proposition 1 implies that only two models may ultimately be chosen: the
model that induces the maximum belief in θh and the model that induces the minimum

9For example, Dst might concern a stranger who lives three blocks down from the DM, whereas D′123st
concerns a stranger who happens to be the DM’s new next-door neighbor.

10Note that while a model of ingroup bias may predict that inferences towards outgroups may become
more favorable as the DM finds it less costly to interact with outgroups due to the increased costs of holding
such distorted beliefs, such a model cannot easily rationalize why such a change in incentives would induce
the DM to interpret the behavior of outgroup members in an overly positive light, as in the example.
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belief; let m and m denote those models, respectively, and let pm, pm denote the beliefs those
models induce in θh given the signal. In this setting, say that belief polarization occurred if
one type of DM adopts m to interpret the data, whereas the other type of DM adopts m.

To take a concrete example, the states could encode whether a new disease is danger-
ous (θh) or benign (θl), where A denotes the level of precautions the DM takes against the
disease, with a and a indicating the highest and lowest levels of precaution, respectively.
Relative to type-1 DMs, type-2 DMs face a higher cost to taking high precautions in either
state11. The signal s could be composed of opposing information from two news sources —
one of which claiming that the disease is likely dangerous, the other of which claiming the
disease is likely benign, where the models in M specify the credibility of the two sources.

The following result characterizes conditions under which belief polarization occurs in
such a setting.

Corollary 4. Let c denote the maximum value of c such that for type-2 DMs, a maximizes
expected utility for some belief. Then, for c ∈ (0, c), there exists a set of models M for which
belief polarization occurs, and furthermore, any such M exhibits

pm ∈
(
L(pm), U(pm, c)

)
pm ∈

(
L(pm), U(pm, c)

)
where the bounds L,U are decreasing in pm and L,U are decreasing in pm, and U,U are
increasing in c.

The fact that that U,U are increasing in c implies that the set of M for which polariza-
tion occurs is expanding in the magnitude of preference heterogeneity. In other words, the
more a society disagrees over their objectives, the greater the scope for polarization. Also,
that the bounds on pm are decreasing in pm, and vice versa for the bounds on pm, reflects
the fact that for polarization to occur, m and m must provide interpretations of compara-
ble strength. This implies a key limitation to polarization as predicted by the decisiveness
criterion: if one model provides strong enough evidence toward its favored state relative to
other models, polarization will disappear as all DMs adopt that model.

Like the decisiveness criterion, a model selection criterion based on optimism can also
generate belief polarization through heterogeneity in DMs’ objectives, as Caplin and Leahy
(2019) demonstrate. Note, however, that wishful thinking cannot generate polarization in
the above setting if v, v, k, k > 0 across all actions. In this case, utility is always lower
in θh than under θl, and so DMs engaged in wishful thinking have no motive to adopt
m over m — in the example above, there is no reason for a wishful thinker to discredit
news that the disease is likely benign, which is strictly positive news. In many settings,

11This variation in costs could result from differences in “real” costs — for example, DMs employed in
essential jobs may have higher costs to staying in lockdown. This variation could also be due to “social”
costs — for example, if taking the vaccine results in the DM being viewed as a non-conformer by her social
group.
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wishful thinking struggles to generate polarization in this same sense — for example, it
seems difficult to argue that a belief that an impending influx of immigrants will reduce
employment opportunities and lower wages, or a belief that the opposing administration
is running the economy into the ground, represents optimistic thinking. Wishful thinking
similarly struggles to explain the apparent effectiveness of mudslinging and negative ad
campaigns in generating polarization. The decisiveness criterion, however, can support the
adoption of such pessimistic interpretations of the data, so long as they guide the DM’s
decision-making.

4.3 Decision-Relevance of States

Suppose that the state space is given by the product space Θ = Θ1 × Θ2 × ...× ΘK . For a
decision problem D = (A, u), say that Θk is not decision relevant if for all a ∈ A, u(a, θ) is
constant in θk.

Under the decisiveness criterion, if a state Θk is not decision relevant, then under cer-
tain conditions on M , the decision-maker will favor models that neglect the role of Θk in
determining the signal—that is, models for which m(s|θ) is constant in θk. In particular,
as formalized in Proposition 9 in Appendix A.2, this comparative static holds when Θk has
the interpretation of a nuisance variable — that is, when any model that accounts for Θk

is less informative about the remaining states compared to a model that neglects Θk. As
the example below illustrates, this comparative static is consistent with experimental results
documenting that errors in attribution are sensitive to the prediction goals of the subject.

Example (Inferential Goals in Attribution). As discussed in Section 4.3.1, the decisiveness
criterion can generate the fundamental attribution error as a consequence of overprecision:
an individual seeking to learn about another’s type θ will ignore the role of situational factors
in inferring from observed behavior s, to the extent that her prior over θ has low decisive-
ness. The decisiveness criterion can also account for another finding from the psychology
literature – that when individuals seek to infer situational factors rather than personality
traits from behavior, they tend to ignore the role of personality traits in generating behavior,
thus committing a reversal of the fundamental attribution error. For example, Krull (1993)
finds that when the target of inference is the situation rather than the actor’s dispositional
traits, observers are less likely to attribute behavior to dispositional traits.

To see how the decisiveness criterion can account for these results, consider a setting in
which the DM is uncertain over both an actor’s type Θ1 = {θ1,h, θ1,l} and the situation Θ2 =
{θ2,h, θ2,l}, and that Θ1 and Θ2 are independent under her prior, with ρ(θ1,h) = ρ(θ2,h) = 1/2.
Consider a signal realization s, which can be attributed to the DM’s type, the situation, or
some combination of the two. In particular, consider the models m1 and m2, where for
q > 0.5

m1(s|θ1,h, θ2) = 1/2q, m1(s|θ1,l, θ2) = 1/2(1− q) for all θ2

m2(s|θ1, θ2,h) = 1/2q, m1(s|θ1, θ2,l) = 1/2(1− q) for all θ1
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That is, m1 and m2 fully attribute the signal to θ1 and θ2, respectively. The true model is
given by

mT (s|θ1,h, θ2,h) = φ2, mT (s|θ1,l, θ2,l) = (1− φ)2

mT (s|θ1,h, θ2,l) = mT (s|θ1,l, θ2,h) = φ(1− φ)

for φ < q. That is, under the true model, the signal is attributed to both θ1 and θ2, but is
less informative about θ1 than it would be under m1, and likewise less informative about θ2

than it would be under m2. Let M = {m1,m2,mT}.

Consider a decision problem D under which the DM’s prior is less decisive than some
model in m: ID(m∅|s) < ID(m|s) for some m ∈M . We then have, by Proposition 9, that if
Θ2 is not decision-relevant to D, then CD(M) = {m1} – that is, if the DM is only concerned
with learning about the actor’s type, then the DM will adopt the model that ignores the role
of situational factors in explaining behavior, consistent with the fundamental attribution
error. Intuitively, a model that ignores the potentially confounding role of situational factors
in attributing behavior to the actor’s type provides stronger recommendations than a model
that also attributes behavior to situational factors, when only the actor’s type is payoff-
relevant. By the same logic, if Θ1 is not decision-relevant – that is, if the DM is concerned
only with learning about situational factors – we must have CD(M) = {m2}. Consistent
with experimental evidence, if the DM’s focus is instead on learning about the situation, the
role of the actor’s type in explaining behavior is ignored.

Note that when both Θ1 and Θ2 are decision-relevant, the DM may adopt the true model
mT . This is broadly consistent with experimental evidence from Graeber (2022), who finds
that in an abstract belief updating task where the signal is a function of both Θ1 and Θ2,
subjects neglect the role of Θ2 in making inferences when they are incentivized to predict
only Θ1, but adjust for Θ2 in inference when incentivized to predict both Θ1 and Θ2. As the
abive example illustrates, the nuisance neglect that Graeber (2022) identifies – that is, the
tendency for individuals to ignore payoff-irrelevant variables when making inferences, can be
generated by the decisiveness criterion.

Furthermore, the decisiveness criterion makes a sharp prediction over when nuisance ne-
glect will tend to occur: payoff-irrelevant variables will tend to be neglected in inference when
accounting for them results in greater uncertainty over the prediction target. As such, the
criterion predicts that the DM may adopt models that account for payoff-irrelevant variables
if doing so increases her certainty over the prediction target: for instance, in the example
considered in Section 3.3.1, the DM accounts for the trustworthiness of the news sources —
a variable that is not directly payoff-relevant — because incorporating this auxiliary variable
helps her draw stronger conclusions from the data. In contrast, an account based solely on
the premise that the DM directs greater attention to payoff-relevant states would predict
neglect of such auxiliary variables regardless of their implications for inference. N

Contrast the predictions of the decisiveness criterion in the above example to those made
by models of rational inattention (see Maćkowiak et al. (2021) for a review) – a class of models
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that predicts that individuals may neglect variables when they are not decision-relevant due
to attentional costs. Note that standard models of rational inattention cannot account for
the predictions above: to the extent that correctly accounting for otherwise payoff-irrelevant
variables helps individuals form more accurate inferences about the prediction target, such
models would not predict a systematic neglect of such variables. Moreover, while mod-
els of subjectively rational inattention (Schwartzstein, 2014; Gagnon-Bartsch et al., 2021)
demonstrate how attentional costs can prevent individuals who hold misspecified models
that neglect the role of certain variables from noticing their error in the face of feedback
— so long as such those variables are not directly payoff-relevant — such models do not
explain why individuals come to adopt such erroneous models in the first place, nor how the
adoption of these models can itself be determined by which variables are payoff-relevant.

5 Choice Under the Decisiveness Criterion

In this section, I study the implications of model selection under the decisiveness criterion
on choice. Fixing a signal realization s: given a utility function u and a set of models M ,
let C(A) denote the actions recommended by the decisiveness-maximizing models in M :

C(A) =
⋃

m∈arg maxm∈M ID(m|s)

arg max
a∈A

∑
θ

u(a, θ)pm(θ|s)

in which case we say that C is represented by (u,M) given signal s. I relegate discussion of
a full behavioral characterization of C and its identification properties to Appendix A.6, and
focus on a key property of C – an aversion to hedging or diversification, and also study a key
comparative static: that if the DM entertains a larger set of models, the DM will be more
averse to diversification.

5.1 Attitudes Towards Diversification

Recall that a key property characterizing model selection under the informativeness criterion
is a preference for extreme models, as summarized by Propositions 1 and 2. An immediate
consequence of the DM’s preference for extreme models is that the DM exhibits a preference
for extreme actions, or an aversion to hedging.

Proposition 5. For a, a′ ∈ A, let a′′ satisfy u(a′′, θ) = λu(a, θ) + (1 − λ)u(a′, θ) for some
λ ∈ (0, 1). If a′′ ∈ C(A ∪ {a′′}), then either a ∈ C(A ∪ {a′′}) or a′ ∈ C(A ∪ {a′′}).

Proposition 5 states that the DM exhibits a form of mixture aversion: she cannot strictly
prefer a hedge between two actions to both of those actions12. That is, choice under the
decisiveness criterion is averse to a specific form of diversification aversion corresponding to
mixtures of acts in utility space.

12In Appendix A.6, I show that mixture aversion is a key axiom in the behavioral characterization of choice
under the decisiveness criterion
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In addition to predicting this form of diversification aversion, the decisiveness criterion
produces the following comparative static on C: that if the DM entertains a larger set of
models, the DM will be more averse to a different notion of diversification, which I define
below.

For the remainder of this section, consider a family of C represented by the same utility u.
For a menu A, let uA(θ) = maxa∈A u(a, θ) for all θ — that is, uA(θ) gives the maximal payoff
in each state among actions in A. We will now introduce an order on C that corresponds to a
level of aversion to a specific notion of diversification. Note that we should expect any notion
of diversification to stipulate that a diversified action does not deliver payoffs that exceed
the maximal payoff profile of the menu, uA(θ). The following definition is more restrictive,
in that it requires that the action delivers payoffs that differ from uA(θ) by a constant.

Definition (C-Diversified Action). Say that a is a C-diversified action with respect to
A if there exists k > 0 such that u(a, θ) = uA(θ) − k for all θ. Let HA collect acts that are
C-diversified with respect to A.

Definition (Relative Diversification Aversion). Say that C ′ is more diversification-averse
than C if for any menu A, a ∈ HA, a /∈ C(A ∪ {a}) =⇒ a /∈ C ′(A ∪ {a}).

That is, C ′ is more diversification-averse than C if C ′ never chooses a C-diversified ac-
tion from a menu whenever C does not. As the proposition below demonstrates, an ap-
propriately defined set inclusion order on the model-implied posteriors the DM entertains
characterizes this notion of relative diversification aversion. For a set of models M , let
PM |s = {pm(·|s) : m ∈ M} denote the corresponding set of model-implied posteriors given
the signal realization. Say that PM |s is interior if no model-implied posterior in PM |s induces
certainty in a state.

Proposition 6. Suppose C, C ′ are represented by (u,M), (u,M ′), respectively, given signal
s. If co(PM |s) ⊆ co(PM ′|s), then C ′ is more diversification-averse than C. Furthermore, if C ′
is more diversification-averse than C and PM ′|s is interior, then co(PM |s) ⊆ co(PM ′|s).

Proposition 6 is a natural consequence of Proposition 1, which states that under the deci-
siveness criterion, the DM selects extreme models. If the the set of models the DM entertains
expands, she will select yet more extreme models and as a result, chose yet more extreme ac-
tions. Proposition 6 also states that the converse is true, so long as the DM does not entertain
models that eliminate all residual uncertainty. One immediate consequence of Proposition
6 is a comparative static on the DM’s valuation of costly but perfectly revealing information.

Example (Value of Information). Consider a DM who chooses to acquire costly but per-
fectly revealing information about the state, whose utility is quasilinear and separable in
money. Consider the action space Z ×W , where Z corresponds to a set of state-contingent
prizes and W ⊂ R corresponds to money. Suppose that the DM’s utility is quasilinear and
separable in money: for any action (z, w), u((z, w), θ) = v(z, θ) + w.
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For any menu A, and cost of information κ < 0 let aAκ denote the action that corresponds
to the continuation payoff of acquiring perfectly revealing information about the state at
monetary cost. Given the quasilinearity assumption, we have u(aAκ , θ) = uA(θ) − κ: by
learning the state prior to choosing from A, the DM achieves the maximal utility achiev-
able in each state, less the cost of the information. Note that aAκ delivers precisely the
payoffs associated with a C-diversified action. Proposition 6 then implies that if the DM
entertains a larger set of models, the DM will have a lower valuation for the informa-
tion: formally, for C, C ′ represented by (u,M), (u,M ′), respectively, if co(PM) ⊆ co(PM ′),
aAκ /∈ C ′(A ∪ {aAκ }) =⇒ aAκ /∈ C(A ∪ {aAκ }), and furthermore if PM ′ is interior, the converse
holds. Intuitively, if the DM entertains a larger set of models, she will tend to hold more
extreme beliefs due to Proposition 1; this in turn reduces the value of information. N

Although Proposition 6 only characterizes a notion of relative diversification aversion
relating to C-diversified action, the result has implications for more general notions of di-
versification. In particular, consider a less restrictive notion of a diversified action that only
stipulates that such an act deliver payoffs that do not exceed the maximal payoff profile of
a menu:

Definition (Diversified Action). Say that a is a diversified action with respect to A if
u(a, θ) ≤ u(aAmax, θ) for all θ. Say that a is a strictly diversified action with respect to A if
u(a, θ) < u(aAmax, θ) for all θ.

A consequence of Proposition 6 is that so long as the set of models the DM entertains
includes sufficiently extreme (but interior) models, the DM will never choose a strictly di-
versified action.

Corollary 5. If a is strictly diversified with respect to A, then there exists a set of interior
models M such that for any M ⊇ M and C represented by (u,M) given signal s, a /∈
C(A ∪ {a}).

Example (Underdiversification). A robust finding is that households tend to hold under-
diversified portfolios — that is, they hold fewer securities than are needed to eliminate id-
iosyncratic risk (see, e.g., Blume and Friend 1975, Kelly 1995, Odean 1999, Vissing-Jorgensen
1999, Polkovnichenko 2005, and Goetzmann and Kumar 2004). A common assumption in
modeling under-diversification is that the return distributions of securities are known, and
that under-diversification results from non-standard preferences such as cumulative prospect
theory (Barberis and Huang 2005) or skewness preferences (Mitton and Vorkink 2007). My
framework highlights an additional force that can generate under-diversification: when in-
vestors face uncertainty over the return distributions of securities, they favor models that
pick out “winners” over models that recommend diversification, as diversification is neces-
sarily likely to be ex-post suboptimal for any realization of returns.

To take a stylized example, consider a DM who chooses how much to allocate between
two securities i = 1, 2, which deliver monetary payoffs in R. Suppose the DM has utility
over money v : R → R; assume only that v is strictly increasing in money. Let Θ describe
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the possible joint payoff realizations of two securities, and let ri,θ denote the monetary payoff
that security i delivers in state θ. Let ai denote the action corresponding to allocating the
full portfolio share to security i, and for α ∈ (0, 1), let aα denote the action that corresponds
to allocating portfolio weight α to security 1; we have u(ai, θ) = v(ri,θ) for i = 1, 2, and
u(aα, θ) = v(αr1,θ + (1− α)r2,θ). Here, I impose one assumption on the structure of payoffs:
that for each θ, f1(θ) 6= f2(θ) — that is, with probability 1, the two securities deliver different
returns.

Note that under these assumptions, aα is strictly diversified with respect to A = {a1, a2}.
Corollary 5 then implies that so long the DM entertains a sufficiently extreme set of models,
she will choose either a1 or a2 over aα.

What characterizes a “sufficiently extreme” model? Here, I give a sufficient condition. Let
Θ1 denote the states where security 1 delivers higher payoffs than security 2, and let Θ2

denote the states where security 2 delivers higher payoffs. As the proof of Corollary 5 shows,
there exists ε > 0 such that if pm

∗
(Θ1|s) > 1− ε, then for any M containing m∗, the DM will

not choose the diversified action. Intuitively, a model that picks out a security as a winner,
such as the m∗ defined above, will in general be decisive: such a model necessarily induces
a belief that investing in that security will likely be ex-post optimal. On the other hand,
models that recommend diversification are in general not decisive, since diversification will
necessarily be ex-post suboptimal. N

5.2 Attitudes Towards Delay of Decision-Making

Consider again a family of C represented by the same utility u, and fix a menu A. Associate
each C-diversified action a ∈ HA with ka ≡ uA(θ)− u(a, θ), the utility difference between a
and the maximal payoff profile.13

Definition (Value of Delay). For a set of models M and signal s, let the value of delay
KA(M |s) denote the minimum ka such that a ∈ C(A ∪ {a}) for C represented by (u,M),
given signal s.

In words, the value of delay KA(M |s) is the highest amount the DM would be willing to
pay to learn the state before choosing her action. The following lemma demonstrates that
the value of delay is a behavioral measure of the DM’s residual uncertainty under the model
she selects from M .

Lemma 1. For D = (u,A), KA(M |s) = minm∈M RD(pm(·|s)).

This section will contrast KA(M |s), the value of delay of a decisiveness-maximizing DM
who entertains models M , from KA({mT}|s), the value of delay for a Bayesian — that is, a
DM who chooses according to the true model.

13Recall that by definition, uA(θ)− u(a, θ) is constant in θ for all a ∈ HA.
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An immediate consequence of Lemma 1 is that so long as mT ∈ M , KA(M |s) ≤
KA({mT}|s): the decisiveness-maximizing DM will have a lower value of delay than a
Bayesian, so long as she entertains the true model. This may be at odds with evidence
suggesting that individuals appear to excessively delay decision-making, such as in work on
choice overload (Chernev et al., 2015). Note however, that while a decisiveness-maximizing
DM places too low a value on delay in an absolute sense, her value of delay may be less
responsive to changes in information that would reduce the value of delay for a Bayesian, as
the following example illustrates.

Example (Value of Delay: Hiring Example). Consider motivating example in the intro-
duction. The DM has uniform priors over the productivity of the candidate {θh, θl}, faces
the decision problem

θh θl
hire v −k
reject 0 0

and observes the signal (sR, sI) ∈ {0, 1}×{0, 1}. Suppose M = {mR,mI ,mRI} characterized
by the likelihood functions

LmR(sR, sI) =

{
4 sR = 1

1/4 sR = 0

LmI (s
R, sI) =

{
4 sI = 1

1/4 sI = 0

LmRI (s
R, sI) =


4 sI = sR = 1

1 sI 6= sR

1/4 sI = sR = 0

where Lm(s) = m(s|θh)
m(s|θl)

. Consider the growth regime from the motivating example, where

v = 4, k = 1, and compare the value of delay for two signal realizations s = (1, 0) and
s′ = (1, 1); under s, the DM receives mixed signals about the candidate’s productivity,
whereas whereas under s′, the DM receives aligned signals indicating that the candidate is
high productivity.

Note that KA({mT}|s) > KA({mT}|s′); a Bayesian has a lower value of delay after
receiving aligned signals, as opposed to receiving mixed signals. Note, however, that since
the decisiveness-maximizing DM adopts the model mR under s, thereby focusing only on the
positive component of the mixed signal s, the posterior of the decisiveness-maximizing DM
is identical for both s and s′, and so KA({mT}|s) = KA({mT}|s′). In other words, whereas
the Bayesian’s value of delay decreases from observing additional information in favor of
hiring the candidate, the decisiveness-maximizing DM’s value of delay does not. Intuitively,
the decisiveness-maximizing DM was already operating according to a model that reduced
the indecisiveness of the mixed signal s, which blunts the response to receiving an aligned
signal s′. Appendix A.4 demonstrates how this logic generalizes. N
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6 Applications

I now discuss two additional applications of the decisiveness criterion. Whereas the pre-
ceding analysis took as primitive M , the set of models the DM entertains, in each of these
applications I extend the framework by considering two distinct forces that may shape M :
the supply of models by expert advisors, and the social exchange of models.

6.1 Certainty in Expert Advice

Evidence suggests that individuals are drawn to advisors who provide more certain advice.
As Kahneman (2011) writes,

Experts who acknowledge the full extent of their ignorance may expect to be
replaced by more confident competitors, who are better able to gain the trust
of clients. An unbiased appreciation of uncertainty is a cornerstone of rational-
ity—but it is not what people and organizations want. (page 263)

Consistent with this view, research in psychology has documented that individuals have a
more favorable view toward advisors who make more certain forecasts as opposed to moderate
ones. In a stark demonstration, Price and Stone (2004) provide subjects with probabilistic
forecasts of a series of events (the likelihood that the price of a stock will increase) made
by two advisors, coupled with the realization of each event; the forecasts of one advisor
are designed to be more extreme (closer to 0% or 100%) but poorly calibrated compared to
those of the other advisor14. The majority of subjects prefer the extreme advisor, despite the
presence of outcome data indicating the superior accuracy of the moderate advisor. Studies
using related experimental paradigms corroborate this finding (Yates et al., 1996; Gaertig
and Simmons, 2018).

An immediate consequence of the decisiveness criterion is that individuals will be drawn
to more certain advice. To see this, consider a setting in which the DM entertains models
proposed by a set of advisors. Proposition 1 states that the DM will tend to adopt extreme
models; in a binary state case, this amounts to the DM adopting models that place the
likelihood of the event close to 0% or 100%. As Kahneman (2011) points out, this tendency
for individuals to adopt certain advice can lead to a proliferation of overly certain advice in a
competitive market for advisors, even if advisors do not inherently have incentives to provide
biased advice. Formally, consider a binary state setting with Θ = {θh, θl}. A receiver and a
set of senders (advisors) share a common prior over the state and observe a common signal
realization s. Each sender i proposes a single model mi to the receiver, who adopts the most
decisive model from M =

⋃
imi given her decision problem D (in case of a tie, suppose the

receiver adopts a random model among the decisiveness-maximizing models in M). Each

14In particular, the forecasts of the moderate advisor are constructed to be accurately calibrated, and
the forecasts of the extreme advisor are constructed by adding 15% to each forecast made by the moderate
advisor greater than 50%, and vice versa subtracting 15% from each forecast less than 50%.
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sender i knows the true model mT , and their payoffs are given by

ui(mi) =

{
v − (pmi − pmT )2 if mi is adopted

0 otherwise.

where pm ≡ pm(θh|s) denotes the posterior induced by model m. Senders earn a payoff if
their model is adopted, and conditional on this have incentives to provide accurate advice.
First, note that in absence of competition between senders, the sender maximizes utility
by proposing the true model mT , which in turn maximizes the utility of the receiver, who
adopts the true model. In what follows, consider the (pure strategy) Nash equilibrium of the
game in which senders simultaneously propose models. Let M∗ denote the model(s) that
the receiver adopts in such an equilibrium.

Proposition 7. Suppose that RD(p) is non-constant in the neighborhood of p = pmT . In
any Nash equilibrium with at least two senders, for any m∗ ∈M∗,the receiver’s equilibrium
posterior belief pm

∗
must be either max{0, pmT −

√
v} or min{1, pmT +

√
v}.

Proposition 7 states that at an interior equilibrium posterior belief, the model adopted by the
sender must satisfy a “zero-profit” condition – it is the most extreme model the receiver can
propose that still yields weakly positive payoffs. Competition causes receivers to ratchet up
the extremeness of their proposed models, even though receivers have no inherent incentives
to push biased models.15

Consider further the special case in which 0 < pmT −
√
v, pmT +

√
v < 1, and in which

the receiver’s decision problem D is symmetric: that is, RD(p) is symmetric around p = 1/2.
In this case, it can be shown that if pmT 6= 1/2, the equilibrium posterior belief is unique,
and is given by

pm
∗

=

{
pmT +

√
v pmT > 1/2

pmT −
√
v pmT < 1/2

In this sense, the models the senders propose in equilibrium are an exaggerated version of
the truth: if the sender believes that θh is more likely than not to occur, she will propose
a model that exaggerates the likelihood of θh, and vice versa if she believes that θl is more
likely than not to occur.

6.2 Shared Models and Group Polarization

As discussed in Sections 3.2 and 4.2, the decisiveness criterion can generate belief polar-
ization in response to information — that is, receiving identical information can cause the
opinions of individuals to diverge along differences in prior beliefs and/or objectives. In this
section, I explore another source of polarization: the exchange of models, or interpretations

15The condition that RD(p) is non-constant around pmT rules out the case in which the receiver finds any
model that would deliver weakly positive profits to the sender to be equally decisive.
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of the data, within a group.

Consider evidence of so-called group polarization — the phenomena in which attitudes
following group discussion are more extreme than the attitudes held by members of the group
prior to discussion. In one such experiment, Schkade et al. (2000) provide. subjects with
identical case information and ask subjects to individually rate the severity of punishment
appropriate for the defendant. Mock juries are then formed and given the task of deliberating
as a group on the punishment severity. The key finding is that group deliberation increases
the extremity of punishment ratings: for juries in which individual punishment ratings were
high, deliberation tends to increase the group rating relative to the median individual rat-
ing within the jury, and vise versa when individual punishment ratings were low. Similar
evidence of group polarization has been documented in group judgements along a variety of
other dimensions, such as the appropriate level of risk-taking (Myers and Lamm, 1976) or
the degree of racial prejudice (Myers and Bishop, 1976).16

What can account for these effects of group deliberation? One possibility is that deliber-
ation allows for the aggregation of private information, which can lead to group polarization
(Roux and Sobel, 2015). One tension with this explanation, as Roux and Sobel (2015) note,
is that subjects are given identical information from which to form their judgements in the
standard experimental paradigm used to study group polarization. Glaeser and Sunstein
(2009) echo this critique, noting evidence for large shifts in beliefs due to group polarization
in settings in which individuals likely have little new knowledge or information to bring to
the table, such as debates surrounding climate change or affirmative action. How can group
polarization arise in settings where individuals lack private information? Glaeser and Sun-
stein (2009) analyze a model of “credulous Bayesians” in which individuals overstate the
informational content of others’ beliefs — in their model, initial heterogeneity in opinions
does not reflect differences in private information but rather noise, and group polarization
arises because individuals misattribute this noise to private information. I propose an al-
ternative account of group polarization, in which initial heterogeneity in opinions does not
reflect differences in private information but rather in individuals’ interpretations of public
information — that is, individuals entertain different models — and that group polarization
is driven by the exchange of models.

The decisiveness criteria provides a simple intuition for why exchanging models can result
in more extreme judgements: extreme models tend to be decisive. Here, I adopt the formal
framework introduced in Schwartzstein and Sunderam (2022) to study the social exchange
of models. Consider a setting with binary states Θ = {θh, θl} (e.g. whether the defendant
committed a serious or a mild offense) over which a group of individuals share a common
prior ρ, a common decision problem D (e.g. deciding the severity of punishment to inflict
on the defendant), and observe a public signal s. Suppose that each individual i initially
entertains a single model mi with which to interpret the data, and after group delibera-

16Importantly, group deliberation has been found to polarize not only group judgements in these settings
but also the private judgements of individuals in the group, suggesting that group polarization is not purely
driven by distortions caused by the group decision-making process such a social desirability or the diffusion
of responsibility.
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tion is exposed to the models entertained by the group, entertaining Mg ≡
⋃
imi.

17 Let
pmi denote individual i’s posterior belief before group deliberation, where for any model m,
pm ≡ pm(θh|s).

Consider the effects of deliberation on beliefs. First, note that group deliberation ex-
pands the set of models that each individual entertains (from {mi} to MG); this leads to the
adoption of more extreme models (Proposition 1), and in turn, more extreme actions (Propo-
sition 6). Second, under the assumption that the group shares a common prior and decision
problem, group deliberation causes the beliefs of individual in the group to converge, as each
adopts the same model from Mg after deliberation. That is, exchanging models leads in-
dividuals in a group to adopt the extreme interpretations of the data found within the group.

In this manner, the exchange of models can amplify initial differences in individual judge-
ments between groups, generating group polarization. To see this, suppose that the decision
problem D is symmetric, and let p = minm∈MG

pm, p = maxm∈MG
pm denote the extreme

viewpoints held by members of the group prior to deliberation. Let p∗ denote the viewpoint
held by the group after deliberation. We have

p∗ =

{
p p+ p > 1

p p+ p < 1

That is, if the initial viewpoints of a group are skewed in favor of θh, the exchange of models
within that group will cause the viewpoints of the the group to be increasingly skewed in
favor of θh, and vice versa if initial viewpoints are skewed towards θl.

18

Note that a key prediction of this account of group polarization is that following group de-
liberation, individuals arrive at beliefs that are not only more extreme, but that also provide
greater certainty over the optimal course of action. Importantly, this latter prediction need
not hold under an account based on Bayesian information aggregation. Under the Bayesian
account, group polarization towards a certain conclusion is purely the consequence of indi-
viduals obtaining a greater balance of evidence in favor of that conclusion after deliberation,
and in particular occurs regardless of the action implications of that conclusion. Therefore,
as demonstrated in Appendix A.3, in certain situations the Bayesian account predicts that
group deliberation will push individuals to hold greater uncertainty over the optimal course
of action. This outlines a key distinction between the predictions of the two accounts: under
a Bayesian account, deliberation can cause individuals to become increasingly convinced in
the conclusion that the case facts are inconclusive over whether the defendant should be
convicted or acquitted, or that there is insufficient evidence to determine whether or not

17The assumption that each individual entertains only a single model prior to group discussion is not central
to the analysis. Without affecting the analysis, one can instead assume that each individual entertains a set
of models Mi and that each individual shares Mi with the group, letting mi denote the model that individual
i finds most decisive from Mi.

18Analogous results hold if we relax the assumption that D is symmetric. In the general case, there exists
a p′ ∈ (0, 1) and increasing functions f1, f2, such that p∗ = p if f1(p − p′) > f2(p′ − p) and p∗ = p if
f1(p− p′) < f2(p′ − p)
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a certain climate protection policy should be adopted, whereas under the present account,
group deliberation systematically pushes individuals away from such conclusions.

7 Extensions

7.1 Plausibility Constraints on Model Selection

As discussed in Section 3, the decisiveness criterion favors extreme models, which induce
extreme beliefs. At the same time, however, it is not the case that decision-makers hold
extreme beliefs in every decision context – empirically, the models individuals adopt and
their resulting conclusions do seem to be constrained by some plausibility criteria. This
section discusses two plausibility-based constraints on model choice; the first imposes a
“cost” to deviating from a default belief, while the second imposes an “entry condition”
based on the fit of a default model.

7.1.1 Cost of Deviating from Default Beliefs

Here, I develop a constraint on model selection that incorporates a cost to selecting models
that induce deviations from default beliefs, following Hansen and Sargent (2001) and Caplin
and Leahy (2019). Let pd ∈ ∆(Θ) denote the DM’s default belief over outcomes. Some
candidate values of pd are the DM’s prior, the posterior belief induced by a default model,
or the posterior beliefs of a Bayesian observer. The DM adopts a model m to maximize
decisiveness, subject to an additional cost of deviating from the default belief, given by the
relative entropy from pd to model-implied posteriors pm(·|s):

1

γ

∑
θ∈Θ

pm(θ|s) ln
pm(θ|s)
pd(θ)

where γ governs the weight of this cost relative to the regret criterion. As before, given the
DM’s choice of model, the DM selects an action that maximizes model-implied posterior
expected utility. Denoting uA(θ) = maxa∈A u(a, θ) as the maximum payoff achievable for
state θ, the DM’s problem can be written as

V = max
a∈A,m∈M

∑
θ∈Θ

(
u(a, θ)− uA(θ)

)
pm(θ|s)− 1

γ

∑
θ∈Θ

pm(θ|s) ln
pm(θ|s)
pd(θ)

Full Model Space. Consider the case where the DM’s entertains the full set of models –
here, the DM can implement any posterior belief by adopting some model. In this case, the
DMs problem can be rewritten as

V = max
a∈A,p∈∆(Θ)

∑
θ∈Θ

(
u(a, θ)− uA(θ)

)
p(θ)− 1

γ

∑
θ∈Θ

p(θ) ln
p(θ)

pd(θ)

Note that the similarity between this formulation and that of Caplin and Leahy (2019): it
is identical to their model of wishful thinking, except the DM’s utility function is replaced
by a normalized utility function v(a, θ) = u(a, θ)− uA(θ), which normalizes the payoff from
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taking an action in state θ by the maximal utility attainable in θ. The model is as if the
agent seeks to maximize anticipatory normalized utility, given a cost of deviating from the
default belief.

Fixing an action a, first order conditions for p imply that an interior solution p must satisfy

p(θ) =
exp

[
γ(u(a, θ)− uA(θ))

]
pd(θ)∑

θ′∈Θ exp
[
γ(u(a, θ′)− uA(θ′))

]
pd(θ′)

This expression tells us that the DM’s posterior will be a “tilting” of their default posterior
that puts less weight on states associated with higher regret given the chosen action a.
Substituting the above expression into DM’s problem yields

V = max
a∈A

1

γ
ln

(∑
θ∈Θ

pd(θ)
exp(γu(a, θ))

exp
(
γuA(θ)

) )
giving a description of the DM’s choice. To interpret this expression, note that the return to
taking an action that pays off in state θ is increasing in pd(θ), the DM’s default belief in θ,
but also is also decreasing in uA(θ), the maximal payoff achievable in state θ. The intuition
for the latter effect is as follows: all else equal, as the maximal payoff associated with state θ
increases, the residual uncertainty associated with that state increases, and so the DM will
tend to select models that induce lower posteriors over θ. Note that this comparative static
is related that of Proposition 3.

Example (Fund Manager). To illustrate this modified criterion, consider the following
example. The DM wants to learn whether a fund manager is high-skilled (θh) or low-skilled
(θl), and initially believes either possibility is equally likely: ρ(θh) = 1/2. The DM’s signal
is the return of the manager’s fund, which is either high or low: {rh, rl}. The DM’s decision
problem is given by

θh θl
hire v −k
don’t hire 0 0

Suppose that k > v, so that given the DM’s prior belief, the DM chooses not to hire the
manager. Suppose further that the DM’s default belief is pd(θh) = 1/2, which corresponds
to a belief that returns are uninformative about manager skill. Consider the case that a low
return is realized. Consider two cases:

Case 1: Full Model Space.
Suppose that the DM entertains the full space of models. Applying the expression above,
the optimal model-implied posterior will be

pm(θh) =
1

1 + exp(γv)

Note that this model-implied posterior pm(θh) is weakly lower than 1/2, and for γ → ∞,
pm(θh) → 0, corresponding to the case where the DM faces no costs of deviating from the
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default belief, whereas for γ → 0, pm(θh)→ 1/2, the default belief.

Case 2: Discrete Model Space.
Suppose the DM entertains two models:

m1 : m1(rl|θl) = φ, m1(rl|θh) = φ

m2 : m2(rl|θl) = q, m2(rl|θh) = (1− q), q > 1/2

that is, under m1, returns are uninformative about skill, whereas under m2, returns are
decisive. Given the DM’s problem, the DM selects m2 over m1 iff

f(q) ≡ v(q − 1/2)− 1

γ
(q ln q + (1− q) ln(1− q)− ln 1/2) ≥ 0

Note that f(1/2) = 0, f ′(1/2) > 0,and f ′′(q) < 0, which implies that for some range of q
above 1/2, the DM will select the informative model m2, but for q too large, the DM will
instead select m1. Intuitively, the DM finds m2 decisive because it provides evidence in favor
not hiring the manager, the action the DM is predisposed toward. At the same time, the
DM will not select m2 if it induces too extreme of a posterior, due to the costs of deviating
from her dfefault belief. N

7.1.2 Entry Condition on Models

Here, I develop a constraint on model selection operating through an entry condition on the
set of models the DM entertains. Let md ∈ M denote the DM’s default model. Following
Schwartzstein and Sunderam (2021), define the fit of a model given realized signal s, as

P (m|s) =
∑
θ∈Θ

m(s|θ)ρ(θ)

The DM adopts a model that minimizes regret, subject to an entry condition that the chosen
model must deliver weakly higher fit than the default model. The DM’s problem is then

min
m∈M∪{md}

∑
θ∈Θ

(u(a, θ)− uA(θ))pm(θ|s) s.t. P (m|s) ≥ P (md|s)

Proposition 1 in Schwartzstein and Sunderam (2021) shows that the above entry condition
is equivalent to the following constraint:

P (m|s) ≥ P (md|s) ⇐⇒ pm(θ|s) ≤ ρ(θ)

P (md|s)
∀θ

that is, the entry condition bounds the extent to which models are allowed to move the DM’s
beliefs away from the prior, where the bounds are tighter the better the fit of the default
model.

Let Pmd =
{
p ∈ ∆(Θ), p(θ) ≤ ρ(θ)

P (md|s)
∀θ
}

denote the set of feasible posteriors given the
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entry condition, and let Mmd = {m ∈M : pm ∈ Pmd} denote the set of models in M ∪ {md}
that survive the entry condition. The DM’s model selection problem can be rewritten as

min
m∈Mmd

∑
θ∈Θ

(u(a, θ)− uA(θ))pm(θ|s)

Note that the results from Section 3 and 4 have analogs that continue to hold in this exten-
sion, once the entry condition on models is accounted for.

Example (Fund Manager Revisited). Consider again the fund manager setting. The DM
wants to learn whether the fund manager is high-skilled (θh) or low-skilled (θl), and holds
priors ρ(θh) = ρ. The DM’s signal is the return of the manager’s fund, which is either high
or low: {rh, rl}. The DM’s decision problem is again given by

θh θl
hire v −k
don’t hire 0 0

where that k > v, so that given the DM’s prior belief, the DM chooses not to hire the man-
ager. Suppose that the DM’s default model md satisfies md(rl|θl) = md(rl|θh) = φ. Suppose
again that a low return is realized.

Which models survive the entry condition? The inequality above implies that only mod-
els that satisfy pm(θh) ∈ [1− (1− ρ)/φ, ρ/φ] will have greater fit than the default model. In
particular, consider the case where φ = 1: here, the default model states that the realized
signal of a low return was inevitable, regardless of the skill of the manager. in this case, the
only model that survives the entry condition is the default model itself. On the other hand,
as φ → 0 — that is, as the realized signal becoems increasingly unlikely under the default
model — the set of surviving models expands to the entire model space. N

7.2 Ex-Ante Decisiveness

Recall that in the basic framework, model selection occurs ex-post: after the signal is re-
alized, the DM evaluates each model based on its decisiveness, given the signal realization,
and adopts the most decisive model. One might instead imagine an account in which the
DM evaluates each model according to an ex-ante notion of decisiveness, and adopts a model
prior to the signal realization. In this section, I provide a formulation of an ex-ante notion
of decisiveness, and compare its properties to the ex-post formulation.

Consider the following formulation of ex-ante decisiveness. As in the basic framework,
the DM entertains a set of models M and faces a decision problem D. Letting pm(s) =∑

θm(s|θ)ρ(θ) denote the likelihood of signal s under model m, let

IED (m) =
∑
s

ID(m|s)pm(s)

denote the expected decisiveness of m prior to the signal realization. Consider a DM who,
prior to the realization of the signal, selects a model from M that maximizes expected
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decisiveness; refer to this account of model selection as the ex-ante case and the account
developed in Section 2 as the ex-post case. In what follows, I will outline which of the
core results of the ex-post case have analogs in the ex-ante case, relegating formal details to
Appendix A.5.

7.2.1 Properties of Model Selection under Ex-Ante Decisiveness

Extremeness. Recall that a key-property of the ex-post criterion is that it favors extreme
models: in particular, as Proposition 1 implies, if m = λm′ + (1 − λ)m′′, then for any s,
ID(m|s) ≤ max{ID(m′|s), ID(m′′|s)}. The ex-ante criterion satisfies an analogous property:
if m = λm′ + (1 − λ)m′′, then IED (m) ≤ max{IED (m′), IED (m′′)}. The intuition for this ex-
tremeness result is similar to that of the ex-ante case: the composite model m′′ corresponds
to a case where the DM is uncertain over how to interpret the information, which results in
lower average decisiveness.

Overprecision and Confirmation Bias. Recall that in the ex-post case, the extremeness
property generates a form of overprecision. In particular, letting m∅ denote an uninfor-
mative model, Corollary 1 states that if ID(m∅|s) < ID(m|s), then for any m′ satisfying
m = λm′ + (1 − λ)m∅, it must be that ID(m′|s) ≥ ID(m|s). That is, under the ex-post
criterion, if the DM finds a model m more decisive than her prior for a given signal real-
ization, she will find a model that overstates the informativeness of m yet more decisive.
The ex-ante criterion also generates overprecision, but does so unconditionally : for any m′

satisfying m = λm′ + (1 − λ)m∅, we have IED (m′) ≥ IED (m): that is, the DM exhibits over-
precision irrespective her prior. In fact, the ex-ante criterion produces a more general form
of overprecision: if m′ dominates m in the Blackwell order, then IED (m′) ≥ IED (m) — that is,
the ex-ante criterion respects the Blackwell order.19

An immediate consequence of the fact that overprecision holds unconditionally in the
ex-ante case is that unlike ex-post decisiveness, model selection under ex-ante decisiveness
does not generate confirmation bias. Recall that in the ex-post case, Corollary 2 states that
if the DM’s prior is sufficiently concentrated in one state, the DM will find an uninformative
model more decisive than a model providing evidence against that state. In contrast, the
ex-ante decisiveness criterion predicts that the DM will never find an uninformative model
more decisive than an informative model, regardless of her priors.

7.2.2 Selection as a Function of Objectives under Ex-Ante Decisiveness

Maximal Payoff Improvements. Selection under the ex-post criterion exhibits the fol-
lowing comparative static, formalized in Proposition 3: adding an action to the menu that
increases the maximal payoff associated with a set of states but is ultimately not chosen can
only result in the DM adopting a model that places lower likelihood on those states. Note
that one implication of this property is that the ex-ante model violates IIA – the addition
of an unchosen action can induce a change in the model the DM adopts, and in turn lead to

19It can be shown that if m = λm′ + (1− λ)m∅, then m is a garbling of m′ and so is dominated by m′ in
the Blackwell order.
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a change in the action taken by the DM. The ex-ante model, on the other hand, does not
allow for such violations of IIA – the addition of unchosen actions cannot induce a change in
model selection. This precludes an analog of Proposition 3 from holding in the ex-ante case.

Reductions in Action Value. As formalized in Proposition 4, in the ex-post case, re-
ducing the payoffs of an action a recommended by model m reduces the decisiveness of m
relative to any model that does not recommend a. A similar comparative static holds for the
ex-ante model. In particular, suppose model m recommends action a for some signal realiza-
tion; it must be that reducing the payoffs of a reduces the decisiveness of m relative to any
model that does not recommend a for any signal realization. In other words, both versions
of the model share the following feature: he more predisposed the DM is to taking an action,
the more they will tend to adopt interpretations of the data that recommend that action,
as opposed to interpretations recommending other actions. As discussed in Appendix A.5,
this property can generate belief polarization along differences in objectives in the ex-ante
model, just as in the ex-post model.

Relationship to Optimism. Recall that ex-post decisiveness delivers distinct predictions
from a model selection criterion based on optimism: in particular, the ex-post decisiveness
of a model is evaluated only based on its implications for the relative, as opposed to ab-
solute, values of actions – a model that induces pessimistic beliefs can still be decisive, so
long as it produces a strong recommendation toward one course of action over its alternatives.

This distinction no longer holds in the ex-ante case, however. The ranking over models
induced by ex-ante decisiveness is equivalent to a model selection criteria based on ex-ante
optimism. To see this, note that the expression for expected decisiveness, for D = (A, u),
can be expressed as

IED (m) =
∑
s

[
max
a∈A

∑
θ

u(a.θ)pm(θ|s)

]
pm(s)−

∑
θ

max
a′∈A

u(a′, θ)ρ(θ)

As the second term on does not depend on m, selecting the model that maximizes ex-ante
decisiveness-maximizing model is equivalent to selecting the model that maximizes expected
utility.

Decision-Relevance of States. Consider the setting analyzed in Section 4.3, in which
the state space can be expressed as Θ = Θ1 × Θ2 × ... × ΘK . As discussed in Section 4.3,
the ex-post model exhibits the following property: if a state Θk is a nuisance variable – that
is, if any model in M that accounts for Θk in explaining the signal is less informative about
the remaining states compared to some model in M that neglects Θk – then if Θk is not
decision-relevant, the DM will adopt a model that neglects Θk. As this result is based on
the fact that ex-post decisiveness generates over-precision, a feature shared by the ex-post
case, an analogous result holds in the ex-ante case, as detailed in Appendix A.5.
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8 Discussion

This paper presents a theory of model selection and inference based on the insight that in-
dividuals seek decisive models, or models that provide clear decision-making guidance, and
studies the implications of this model selection criterion on inference and choice. I conclude
by discussing potential extensions and additional applications of the theory.

One limitation of the theory is that it studies model selection as a one-shot procedure.
In reality, the set of models decision-makers entertain is often in flux as they are exposed
to new models, and decision-makers may revise their working model in light of new infor-
mation. Section 6 studies one such setting, in which the set of models the decision-maker
entertains expands as a result of the social exchange of models. A more complete extension
of the theory that considers these dynamics could shed light on how the models individuals
adopt change over time, and which models tend to survive the realization of uncertainty.
An additional set of applications of the theory is to study its implications for model per-
suasion (Schwartzstein and Sunderam, 2021), in which senders influence receivers’ beliefs
by proposing models to interpret known data – under the assumption that receivers select
models that they find decisive. While Section 6 analyzes a special case of model persuasion
in which senders’ preferences are aligned with those of the receiver, a more complete analysis
of model persuasion under the decisiveness criterion could shed further light on what models
we should expect decision-makers to be exposed to in the presence of persuaders.
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Appendix

A.1 Model Selection for Prediction Problems

As noted in Section 3, a natural approach to applying the theory in situations where the
DM does not face a particular decision problem is to assume that the DM learns from data
as if they face a prediction problem. Formally, a prediction problem is a decision problem
D = (A, u) where the actions A = ∆(Θ) consist of a belief report. For a prediction problem
D = (∆(θ), u), refer to u as a scoring rule. Say that a scoring rule u, as well as its associated
decision problem D, is proper if for all p, q ∈ ∆(Θ),

∑
θ u(p, θ)p(θ) ≥

∑
θ u(q, θ)p(θ); that is,

a prediction problem is proper if the DM maximizes expected utility by truthfully reporting
their beliefs.

Example (Proper Prediction Problems).
Quadratic Loss. Suppose Θ = {0, 1}. In this case, we can represent A = ∆(Θ) with the
probability that θ = 1; consider the scoring rule u(a, θ) = (a− θ)2. It is well known that this
scoring rule is proper. The decisiveness of a model m in this prediction problem is given by

ID(m|s) = −pm(1− pm)

where pm ≡ pm(θ = 1|s). For the prediction problem associated with quadratic loss, the DM
adopts the model that minimizes her posterior variance.

Logarthimic Loss. Consider the scoring rule u(p, θ) = − log p(θ). This scoring rule is proper,
and the decisiveness of a model m in this prediction problem is

ID(m|s) = −
∑
θ

pm(θ|s) ln(pm(θ|s))

That is, logarithmic loss leads the DM to adopt the model that minimizes posterior entropy.
N

Here, I to characterize model selection under the decisiveness criterion in the case where
D is a proper prediction problem. In particular, I ask whether the restriction to proper
prediction problems imposes further properties on model selection beyond the necessary and
sufficient properties given in Proposition 2. As Proposition 8 states, the answer turns out to
be negative:

Proposition 8. A model choice correspondence C satisfies

1. Sen’s α, β: If m ∈M ⊆M ′ and m ∈ C(M ′), then m ∈ C(M). Also, if m,m′ ∈ CD(M),
M ⊆M ′ and m′ ∈ C(M ′) then m ∈ C(M ′).

2. Continuity: For all m ∈ M, {m′ ∈ M : m′ ∈ C({m,m′})} and {m′ ∈ M : m ∈
C({m,m′})} are closed.

3. Scale Invariance: For any m ∈ M, if m′ satisfies m′(s|θ) = λm(s|θ) ∀ θ, λ > 0, then
C({m,m′}) = {m,m′}.
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4. Extremeness: For m,m′ ∈ M , if m,m′ /∈ C(M), then for any λ ∈ (0, 1), λm + (1 −
λ)m′ 6∈ C(M).

5. Certainty Preference: If m(s|θ) = 1 for any θ ∈ Θ and m ∈M , then m ∈ C(M).

if and only if there exists a proper prediction problem D and signal s such that C(M) =
CD(M |s) for all M ⊆M.

In other words, the class of proper prediction problems is sufficiently rich so as not to
rule out any patterns of model selection that would obtain under the decisiveness criterion.

A.2 Decision-Relevance of States: Details

As in Section 4.3, suppose that the state space can be expressed as Θ = Θ1×Θ2× ...×ΘK ,
where under the DM’s prior ρ, the Θk are independent. Let ρk denote the marginal of the
DM’s prior over Θk, and for model m, let m−k : Θ−k → ∆(S) denote the likelihood function
over states Θ−k denoted by integrating m over θk, with m−k(s|θ−k) =

∑
θk
m(s|θ)ρk(θ). For

a decision problem D = (A, u), say that Θk is not decision relevant if for all a ∈ A, u(a, θ)
is constant in θk.

Say that m neglects state Θk if m(s|θ) is constant in θk. Say that Θk is a nuisance
variable with respect to M if for all m ∈ M , there exists m∗ that neglects k s.t. for some
λ ∈ [0, 1], λm∗−k + (1 − λ)m∅ = m−k. That is, a state is a nuisance variable if any model
attributing the signal to that state renders the model less informative about other states.

Proposition 9. Fix a signal realization s, and suppose Θk is a nuisance variable with
respect to M . If Θk is not decision relevant under D and additionally ID(m|s) > ID(m∅|s)
for some m ∈M , then CD(M) must contain a model that neglects k.

A.3 Shared Models and Group Polarization: Details

Here, I discuss an example illustrating that Bayesian information aggregation need not result
in greater certainty over the state.

Example (Diagnositicity of Evidence). Suppose that a group of N individuals have a
common, uniform prior over the state Θ = {θl, θh} (e.g. not guilty vs. guilty) and receive
a public signal sh ∈ {sh, sl}. Individuals are uncertain over how to interpret sh, and in
particular, entertain two different models that describe the data-generating process: under
m1, the signal is uninformative over the state, and under m2, the signal provides evidence
towards θh:

m1(sh|θh) = 1−m1(sh|θh) = q > 1/2

m2(sh|θh) = m2(sh|θl) = 1/2

Suppose that individuals share a common, uniform prior over the two models, and each
individual i obtains a private iid signal ψi ∈ {1, 2} over the model space, where

Pr(ψi = 1|m1) = Pr(ψi = 2|m2) = p > 1/2
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where the ψi are also independent of θ and s. It follows that if a greater number of individuals
in the group receive the signal ψi = 2 than receive ψi = 1, then information aggregation
causes individuals to become increasingly certain that m2 describes the data-generating
process, and therefore increasingly uncertain over the state. N

A.4 Value of Delay: Details

Consider a binary state setting where the DM has access to a vector of binary signals
s ∈ S1 × S2 × ... × SK , where each Sk = {h, l}. Let mk denote the model characterized
by the likelihood ratio

Lmk(s) ≡
mk(s|θh)
mk(s|θl)

=

{
λ sk = h

1/λ sk = l

for λ > 1. Suppose the true model mT =
∑

k αkmk for weights αk > 0,
∑

k αk = 1, and let
M = {m : m =

∑
k βkmk,

∑
k βk = 1}. That is, M contains all possible mixtures of the mk.

The following proposition states that if a Bayesian receives a signal s′ that moves her be-
liefs further from the prior and reduces her value of delay relative to a signal s, a decisiveness-
maximizing DM will exhibit a lower reduction in the value of delay.

Proposition 10. Fix any decision problem D = (u,A). Take any two signals s, s′ ∈ S
such that either ρ(θh) ≤ pmT (θh|s) < pmT (θh|s′) or ρ(θh) ≥ pmT (θh|s) > pmT (θh|s′), and
suppose that KA({mT}|s′) < KA({mT}|s). Then KA({mT}|s)−KA({mT}|s′) ≤ KA(M |s)−
KA(M |s′).

A.5 Ex-Ante Decisiveness: Details

Let CE
D (M) = arg maxm∈M IED (m) denote the models the DM adopts under the ex-ante

decisiveness criterion. Begin by establishing that the extremeness property holds for the
ex-ante criterion.

Proposition 11. For m,m′ ∈ M , if m,m′ /∈ CE
D (M), then for any λ ∈ (0, 1), λm + (1 −

λ)m′ /∈ CE
D (M).

We now show that overprecision holds for the ex-ante criterion. As in the main text, let
mT denote the true model and m∅ denote an uninformative model.

Proposition 12. For any m satisfying λm+ (1−λ)m∅ = mT for some λ ∈ (0, 1), IED (m) ≥
IED (mT )

Now, we state analog of Proposition 4 for the ex-ante case. Consider two decision prob-
lems D = (A, u),D′ = (A, u′). Say that action a∗ ∈ A is uniformly worse in D′ relative to D
if u′(a∗, θ) ≤ u(a∗, θ) for all θ and u′(a, θ) = u(a, θ) for all θ, a 6= a∗.
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Proposition 13. Suppose a∗ is uniformly worse in D′ relative to D. If m ∈M recommends
a∗ from D′ for some s ∈ S and m′ ∈ CE

D (M) does not recommend a∗ from D for any s ∈ S,
then m /∈ CE

D (M) =⇒ m /∈ CE
D′(M).

We now state the analog of Proposition 9 for the ex-ante case. Consider the setting
studied in Appendix A.2. We have the following result:

Proposition 14. Suppose Θk is a nuisance variable with respect to M . If Θk is not decision
relevant under D and additionally IED (m) > IED (m∅) for some m ∈ M , then CE

D (M) must
contain a model that neglects k.

A.6 Behavioral Characterization and Identification Results

A key primitive in the framework is the set of models the DM entertains, M . In many
situations, however, the set of models the DM entertains is difficult or impossible to directly
observe. This raises the following questions: if we are unwilling to make a-priori restrictions
on M , does the theory nevertheless make meaningful restrictions on choice, and can M be
deduced from choice data?

I take up both of these questions, working in an extended environment that includes
objective lotteries over outcomes following Anscombe and Aumann (1963). In particular,
I build directly on results from Stoye (2011), which characterize min-max regret choice
correspondences, to provide characterization and identification results for the theory.

A.6.1 Extending the Environment

We extend the DM’s decision environment as follows. There is a finite set of prizes Z. The
DM chooses from menus of acts, A ⊆ X ≡ ∆(Z)Θ, where each act f ∈ X is a mapping from
states to objective lotteries over prizes. Let A denote the collection of finite subsets of X.
Take as data the choice correspondence C : A⇒ X, which satisfies C(A) ⊆ A for all A ∈ A.

Because multiple models can induce the same posterior belief for a given signal realiza-
tion, it will not in general be possible to identify the set of models the DM entertains; the
representation we consider will therefore focus on the set of posteriors P induced by the
models the DM entertains. Recall that under Assumptions 3 and 4, which will be main-
tained in this section, there exists a model inducing any posterior p ∈ ∆(Θ). Recall also
that Assumption 2 ensures that the set of models M the DM entertains is closed; carry
this assumption into this environment and restrict attention to closed sets of model-induced
posteriors in the representation. Let P denote the collection of all closed subsets of ∆(Θ).
Let U denote the set of utility functions from Z to R, and extend these to ∆(Z) by taking
expectations20.

Definition (Decisiveness-Maximizing Representation). A choice correspondence C has a

20In particular, for u ∈ RZ , for each q ∈ ∆(Z) let u(q) =
∑
z∈Z u(z)q(z).
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decisiveness-maximizing representation if there exists (u, P ) ∈ U×P such that for all A ∈ A,

C(A) =
⋃

p∈I(P |A)

arg max
f∈A

∑
θ∈Θ

u(f(θ))p(θ)

where

I(P |A) = arg max
p∈P

{
max
f∈A

∑
θ∈Θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

}

If the above holds, say that (u, P ) represents C.

In words, if C is represented by a utility function and a set of model-implied posteriors, C
chooses the acts that maximizes expected utility with respect to a posterior that maximizes
decisiveness. Now, introduce two additional assumptions that will be needed for identifica-
tion:

Assumption 5: There exists z, z′ ∈ Z such that u(z) > u(z′).

Assumption 6: P does not contain δθ for any θ ∈ Θ.

Assumption 5 amounts to a non-triviality assumption that ensures that the DM is not
indifferent between all acts. Assumption 6 is substantive, and rules out models that induce
certainty in a state. Assumptions 5 and 6 are crucial for the identification result that follows,
but partial identification of the set of extreme models is still possible when Assumption 6 is
relaxed, as I will subsequently discuss.

A.6.2 Relationship to Min-Max Regret Models

This model has a tight relationship with the min-max regret model, characterized in Hayashi
(2008) and subsequently Stoye (2011), which has the representation

C(A) = arg min
f∈A

max
p∈P

∑
θ∈Θ

[
max
f ′∈A

u(f ′(θ))− u(f(θ))

]
p(θ)

Here, the DM chooses to minimize the worst-case expected regret, taken with respect to the
set of beliefs P . As Lemma 2 in the Appendix shows, the decisiveness-maximizing repre-
sentation is equivalent to a min-min regret model, where the DM chooses to minimize the
best-case expected regret. As such, my characterization result directly follows the axiomati-
zation in Stoye, with the appropriate adjustment in axioms to replace the max operator with
a min operator. In particular, as I discuss below, while the min-max model is characterized
by a preference for hedging, my model is instead characterized by an aversion to hedging.

A.6.3 Characterization Result

To state the axioms, first introduce some notation. For any act f , with some abuse of nota-
tion let f(θ) refer to a constant that yields lottery f(θ) in all states; where appropriate, let
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z denote the constant act yielding prize z ∈ Z.

Say that f improves on A if there exists some θ for which for all f ′ ∈ A, f(θ) =
C({f(θ), f ′(θ)}), and say that menu A′ improves on A if there exists some f ∈ A′ that im-
proves on A. Also, for menu A, act f , λ ∈ [0, 1] let λA+(1−λ)f = {λf ′+(1−λ)f : f ′ ∈ A}.
Finally, for acts f, g and menu A, let f ⊕ g = 1

2
f + 1

2
g and A⊕ g = 1

2
A+ 1

2
g.

Consider the following axioms:

Axiom 1 (IINIA & IISIA).

• IINIA: Take A ⊆ A′, where A′ does not improve on A. If f ∈ A ⊂ A′ then f ∈
C(A′) =⇒ f ∈ C(A). Also if f, f ′ ∈ C(A) then f ∈ C(A′) =⇒ f ′ ∈ C(A′).

• IISIA: For fa, fb ∈ Xc, if A does not improve B and A⊕fa does not improve B⊕fb, and
additionally C(A∪B) ⊆ A and C((A⊕fa)∪(B⊕fb)) ⊆ A⊕fa, then f ∈ C(A∪B) =⇒
f ⊕ fa ∈ C((A⊕ fa) ∪ (B ⊕ fb)).

Axiom 2 (Monotonicity). If f ′(θ) ∈ C(f(θ), f ′(θ)) for all θ, then f ∈ C(A ∪ {f}) =⇒ f ′ ∈
C(A ∪ {f ′}). Also, if f ′(θ) = C(f(θ), f ′(θ)) for all θ, then f ′ ∈ A =⇒ f /∈ C(A).

Axiom 3 (Mixture Continuity). For f, g, h ∈ X and A ∈ A, the sets

{α ∈ [0, 1] : αf + (1− α)g ∈ C({αf + (1− α)g} ∪ {h} ∪ A)}
{α ∈ [0, 1] : h ∈ C({αf + (1− α)g} ∪ {h} ∪ A)}

are closed.

Axiom 4 (Mixture Independence). For λ ∈ (0, 1), g ∈ X, f ∈ C(A) =⇒ λf + (1 − λ)g ∈
C(λA+ (1− λ)g).

Axiom 5 (Mixture Aversion). For f, g ∈ X,λ ∈ (0, 1) s.t. {f, g} ⊆ C(A), f ∈ C(A ∪
{λf + (1− λ)g}).

Axiom 6 (Non-Triviality). There exists z, z′ ∈ Z such that C({z, z′}) = z.

Axiom 7 (No Certainty). For fa, fb, fc ∈ Xc s.t. fa = C(fa, fb), fb = C(fb, fc), for all θ∗,
there exists λ∗ ∈ (0, 1) such that for all λ ∈ (0, λ∗), act g with g(θ) = λfa(θ) + (1− λ)fb(θ)
for θ = θ∗, g(θ) = fc(θ) for θ 6= θ∗, and any A that neither improves nor is improved by
g(θ∗), g /∈ C(A) whenever fb ∈ A.

Axiom 1 is a weakening of the standard IIA axioms. This weakening reflects the fact
that model selection under the decisiveness criterion, and therefore the evaluation of a given
action, depends on the decision problem that the DM faces; Axiom 1 places testable restric-
tions on the nature of this dependence. In particular, IINIA states that choice satisfies an
IIA property with respect to acts that do not improve the maximal payoff profile — that
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is, only the addition of acts that improve the maximal payoff profile can induce a change in
choice among existing alternatives. On the other hand, IISIA states that scaling the payoffs
of irrelevant maximal actions cannot induce preference reversals among non-maximal actions.

Example (Violation of IINIA). Suppose the prize space contains two elements, zh, zl, where
C({zh, zl}) = zh. Identify each act by the probability it places on prize zh in each state.
Suppose we have the acts f, g, h with

θ1 θ2

f 1 0
g 0 1
h 0 0.9

and suppose that C({f, g}) = f and C({f, g, h}) = g. Choice in this example exhibits the
asymmetric dominance effect — the addition of h, which is dominated by g, causes the DM
to switch from f to g. IINIA rules out such forms of menu dependence. N

Axiom 2 imposes that choice obeys state-wise dominance relationships. Axiom 3 is a
technical condition, and Axiom 6 reflects the assumption that the set of acts is non-trivial,
whereas Axiom 7 reflects the assumption that the set of models the DM entertains precludes
models that induce complete certainty.

Axiom 4 is a weakening of the standard Independence axiom, which states that choice
from a menu is invariant to mixing all acts in the menu with another act. It jointly captures
two properties of the theory. The first property concerns choice when the DM is restricted
to a single model. In this case, the theory collapses to a case of subjective expected utility
(SEU), where the DM evaluates prospects according to a fixed set of subjective beliefs (a
fixed model) – in SEU, Independence must hold. The second property is a restriction on
how model selection can depend on the DM’s decision problem. In particular, since the
decisiveness of a model depends only on statewise differences between the utility levels of
alternatives in the menu, shifting the utility levels that all acts deliver in a state by the same
constant cannot induce a change in which model the DM selects. Since in the theory, choice
for a fixed model satisfies Independence, and model selection also is invariant to such mixing
operations performed on DM’s decision problem, choice itself must satisfy Independence.

Example (Violation of Mixture Independence). Suppose again that Z = {zh, zl} with
C({zh, zl}) = zh, and again identify each act by the probability it places on prize zh in each
state. Suppose we have the acts f, g, f ′, g′

θ1 θ2

f 0.6 0.4
g 0.8 0.2

θ1 θ2

f ′ 0.3 0.7
g′ 0.4 0.6

and suppose C({f, g}) = g and C({f ′, g′}) = f ′. Choice in this example can be rationalized
by a model of wishful thinking — the DM places higher beliefs in the state under which she
can obtain higher payoffs — θ1 when the menu is {f, g} and θ2 when the menu is {f ′, g′}.
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Note however, that f ′ = 1
2
f + 1

2
h, g′ = 1

2
g + 1

2
h, where h satisfies h(θ1) = zl, h(θ2) = zh, and

so this choice pattern violates Mixture Independence. Note that although that the above
mixing operation changes the payoff levels that acts deliver in either state, the payoff differ-
ences within states are preserved; it is the latter consideration, rather than the former, that
determines the decisiveness of a given model. N.

Axiom 5 imposes that choice satisfies an extremeness property: mixing between two acts
cannot result in an act that “improves” on those acts. Axiom 5 directly corresponds to the
key extremeness property of the decisiveness criterion formalized in Proposition 1 — the
DM’s tendency to select extreme models directly translates into a tendency to choose ex-
treme actions – or alternatively a tendency against choosing “diversified” actions or hedging.
Note the relationship between Axiom 5 and the Uncertainty Aversion axiom in Gilboa &
Schmeidler’s (1986) characterization of the Min-max Expected Utility (MEU) model, which
embodies the opposite preference towards diversification: if the DM is indifferent between two
acts, she must prefer a mixture of those acts to either act. As one might expect, documented
choice patterns reflecting ambiguity aversion, which MEU was formalized to rationalize, are
inconsistent with Axiom 5, and therefore cannot be rationalized by my theory.

Example (Violation of Mixture Aversion). As before, let Z = {zh, zl} with C({zh, zl}) = zh,
and identify each act by the probability it places on prize zh in each state. Suppose we have
the acts f, g, h

θ1 θ2

f 1 0
g 0 1
h 0.5 0.5

with C({f, g}) = {f, g} but C({f, g, h}) = h. This choice pattern corresponds to a exper-
imental findings for a variant of the classic Ellsberg paradox (Becker and Brownson 1964)
in which h corresponds to betting on a black ball being drawn from an urn known to have
50 black and 50 red balls, and f and g correspond to betting on a black and red ball, re-
spectively, being drawn from an urn with an unknown mix of black and red balls. Note that
such choice patterns are ruled out by Axiom 5. N

Although Axiom 5 is at odds with an established body of evidence for ambiguity-averse
preferences in choice settings similar in structure to the example above, there is also a body
of evidence for mixture-averse preferences consistent with Axiom 5. For example, Heath and
Tversky (1991) demonstrate that aversion to ambiguity reverses when subjects bet in do-
mains in which they have high perceived expertise. In particular, when subjects self-identify
as having expertise regarding events for which objective probabilities are unavailable (e.g.
outcomes of elections or football matches), they prefer to bet on those events over events
with known probabilities, even when the former outcomes are judged by subjects to be
equiprobable — behavior which violates Uncertainty Aversion but is consistent with Axiom
5. Viewed through the lens of my theory, subjects who have greater expertise in a given
domain may be able to entertain a greater range of arguments (models) for or against any
given outcome, which would rationalize the documented mixture-averse behavior. Outside
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of stylized lab experiments, evidence for behavior consistent with mixture aversion abounds:
it is well known that investors tend to hold underdiversified portfolios consisting of too few
securities to eliminate idiosyncratic risk (e.g. Mitton and Vorkink 2007) and also tend to
exhibit home bias, concentrating their ownership in domestic stocks (French and Poterba
1991). As Section 5 demonstrates, in this model, such behavior can be rationalized as a
consequence of uncertainty over the payoff distributions of securities.

The following result states that choice in the model is characterized by Axioms 1–5.
Recall that Proposition 1 states that for any decision problem, only extreme models can
strictly minimize decisiveness. This implies that in general, only identification of the set of
extreme model-induced posteriors from choice data will be possible. The result shows that
the set of extreme model-induced posteriors are indeed identified, if we additionally assume
Axioms 6 and 7 – that is, if Assumptions 5 and 6 are satisfied.

Theorem 1. C satisfies Axioms 1–5 if and only if it has a decisiveness-maximizing rep-
resentation (u, P ). C additionally satisfies Axioms 6 and 7 if and only if u and P satisfy
Assumptions 5 and 6, respectively, and for any (u′, P ′) representing C, there exists constants
α > 0, β such that u′ = αu+ β, and ext(P ′) = ext(P ).

The proof of the characterization result in Theorem 1 directly builds on characterization
results for the min-max model established in Stoye (2011), which shows that Axioms 1-4,
as well as an Uncertainty Aversion axiom, characterize the min-max regret model. Note,
however, that while the extreme set of model-implied posteriors is identified in min-max
regret model if Axiom 6 (Non-Triviality) is assumed, the same is not the case in my model.
Intuitively, if the DM entertains a model-induced posterior p ∈ P that places certainty in
a state θ – that is, if Assumption 6 does not hold – the DM will never select (outside of
cases of indifference) a model that does not place certainty in any state, even if such a model
is extreme. This precludes the identification of the full set of extreme models in the case
where Assumption 6 does not hold, and so the No Certainty axiom, which guarantees that
Assumption 6 holds – is required for identification. Below I provide a partial identification
result in a setting where Assumption 6 is relaxed.

For a set of model-induced posteriors P , let ct(P ) = {p ∈ P : p = δθ for some θ ∈ Θ}
denote the set of certainty-inducing posteriors. The following result states that when ct(P )
is non-empty it can be identified from choice data, and moreover that choice data identifies
whether or not ct(P ) is non-empty.

Theorem 2. C satisfies Axioms 1–6 if and only if it has a decisiveness maximizing repre-
sentation (u, P ), where u satisfies Assumption 5. Also, for any (u′, P ′) representing C, there
exists constants α > 0, β such that u = αu′ + β, and ct(P ) = ct(P ′).

Note that in the case where the data identifies that ct(P ) = ∅, Assumption 6 holds and
so we can use the identification result in Theorem 1 to identify the full set of extreme models
from choice data.
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A.6.4 Relative Diversification Aversion

Here, I state a comparative static that corresponds to Proposition 6 in the main text, which
states that if the DM entertains a larger set of models, the DM will be more averse to diversi-
fication. Consider a family of choice functions {Ck}k∈K that have a decisiveness-maximizing
representation, and that share the same utility over prizes. It can be shown that if C has a
decisiveness-maximizing representation, choice over menus of constant acts can be described
by a preference relation (see Lemma 4); let �∗ denote the preference relation that describes
choice over constant acts for members of {Ck}k∈K . For a menu A, let fAmax denote any act
that satisfies fAmax(θ) ∈ {f(θ) : f ∈ A, f(θ) �∗ g(θ)∀ g ∈ A} — that is, fAmax delivers the
most preferred outcome in each state among acts in A.

Definition (C-Diversified Act). Say that h is a C-diversified act with respect to A if there
exists lotteries over prizes q, q ∈ ∆(Z) satisfying q �∗ q such that fAmax(θ) ⊕ q ∼∗ h(θ) ⊕ q
for all θ. Let HA collect acts that are C-diversified with respect to A.

As in the definition of a C-defined action in the main text, a C-diversified act has the
following interpretation: to construct a C-diversified act, one takes the maximal payoff
achievable in each state and reduces that payoff by a constant.

Definition 3 (Relative Diversification Aversion). Say that C ′ is more diversification-averse
than C if for any A ∈ A, h ∈ HA, g /∈ C(A ∪ {h}) =⇒ g /∈ C ′(A ∪ {h}).

That is, C ′ is more diversification-averse than C if C ′ never chooses a diversified act from
a menu whenever C does not. I now stat the analog of Proposition 6 in the main text.

Theorem 3. Suppose C, C ′ are represented by (u, P ), (u, P ′), respectively. If co(P ) ⊆
co(P ′), then C ′ is more diversification-averse than C. Furthermore, if C ′ is more diversification-
averse than C and P ′ satisfies Assumption 6, then co(P ) ⊆ co(P ′).

A.7 Proofs: Propositions in Main Text

Proof of Proposition 1. Fix some signal s; in what follows I drop the dependence
on s in the notation, where appropriate. Since maxa

∑
y u(a, θ)p(θ) is convex in p and∑

y maxa′ u(a′, θ)p(θ) is linear in p, RD is concave in p. Bayes’ rule implies that for all

α ∈ (0, 1), there exists λ ∈ (0, 1) such that pλm+(1−λ)m′ = αpm + (1 − α)pm
′
, and so ID is

convex. Therefore, ID(λm+ (1−λ)m′) ≤ max{ID(m), ID(m′)}, and so m,m′ /∈ CD(M) =⇒
λm+ (1− λ)m′ /∈ CD(M), thus establishing the first part of the proposition.

Now additionally suppose thatAm, Am
′
are disjoint. Toward a contradiction, suppose that

λm + (1− λ)m′ ∈ CD(M) for λ ∈ (0, 1). Bayes’ rule implies that there exists α ∈ (0, 1) s.t.
αpm+(1−α)pm

′
= pλm+(1−λ)m′ . We then have RD(pλm+(1−λ)m′) ≤ αRD(pm)+(1−α)RD(pm

′
).

Fix a ∈ AmD and a′ ∈ Am′D . The preceding inequality implies that for any a′′ ∈ Aλm+(1−λ)m′

D ,∑
θ

u(a′′, θ)(αpm(θ) + (1− α)pm
′
(θ)) ≥ α

∑
θ

u(a, θ)pm(θ) + (1− α)
∑
θ

u(a, θ)pm
′
(θ)
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Since
∑

θ u(a′′, θ)pm(θ) ≤
∑

θ u(a, θ)pm(θ) and
∑

θ u(a′′, θ)pm
′
(θ) ≤

∑
θ u(a′, θ)pm

′
(θ), the

above implies that
∑

θ u(a′′, θ)pm(θ) =
∑

θ u(a, θ)pm(θ) and
∑

θ u(a′′, θ)pm
′
(θ) =

∑
θ u(a′, θ)pm

′
(θ),

which in turn implies that a′′ ∈ AmD , Am
′
D , a contradiction.

�

Proof of Proposition 2. Fix some signal s; in what follows I drop the dependence on
s in the notation, where appropriate. Proposition 1 shows necessity of Extremeness; ne-
cessity of Sen’s α, β, Certainty Preference, and Scale Invariance are immediate from the
definition of the regret criterion.

To see necessity of Continuity, let E ⊂ Rn denote a convex, compact superset of ∆(Θ).

Consider H̃ : E → R defined by H̃(p) = maxa∈A

{∑
θ u(a, θ)p(θ)−

∑
p maxa′∈A u(a′, θ)p(θ)

}
.

Since H̃ is the maximum over a family of affine functions on a convex, compact set, H̃ is
convex. By construction H̃ is bounded from above by 0, and is bounded from below. So H̃ is
a proper convex function and is therefore continuous on the relative interior of E21, which in
turn implies that H, the restriction of H̃ to ∆(Θ), is continuous. Therefore, RD(p) = −H(p)
is continuous, and so ID(m) = RD(pm) is continuous since the map m→ pm is continuous.

To show sufficiency, note that Sen’s α, β implies that there is a preference relation � where
CD(M) = {m ∈M : m � m′ ∀m′ ∈M}. Since M is a closed, bounded subset of Rn, � can
be represented by a continuous utility function V :M→ R. Let R̃ = −V . Since C satisfies
Extremeness, R̃ must be concave. Since C satisfies Certainty Preference, R̃ must attain its
minimum value at any m such that pm = δθ for any θ ∈ Θ; normalize this minimum value
to 0. Scale Invariance implies that R̃(m) = R̃(m′) whenever pm = pm

′
, and so the function

R : ∆(Θ)→ R satisfying R(pm) = R̃(m) is well defined.

Bayes’ rule implies that for all λ ∈ (0, 1), there exists α ∈ (0, 1) such that λpm + (1 −
λ)pm

′
= pαm+(1−α)m′ , and so R inherits concavity from R̃, and for any θ ∈ Θ, R(δθ) = 0.

By Theorem 2 of Frankel and Kamenica (2019), there exists a set of actions A and utility
function u : A×Θ→ R such that R(p) =

∑
θ∈Θ p(θ) maxa u(a, θ)−maxa

∑
θ∈Θ p(θ)u(a, θ).

�

Proof of Corollary 1. Follows immediately from Proposition 1.
�

Proof of Corollary 2. Fix some signal s; in what follows I drop the dependence on s
in the notation, where appropriate. In the binary state case, the residual uncertainty can
be expressed as RD(p), where p = p(θh). For any model m, let pm ≡ pm(θh). By Propo-
sition 2, we know that RD(0) = RD(1) = 0, RD(p) ≥ 0, and that RD is continuous. This
implies that there exists p∗ > 0 where RD(p) is increasing for all p ≤ p∗. By Bayes’ rule,

if m(s|θh)/m(s|θl) < (1−p)p∗
p(1−p∗) , then pm ≤ p∗ so long as ρ(θh) ≤ p, which in turn implies that

ID(m′) ≥ ID(m) for ρ(θh) ≤ p and any m′ in favor of θl since RD is increasing on [0, p∗].

21Theorem 10.4 in Rockafellar, “Convex Analysis”
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Finally, note that for ρ(θh) ≤ p and any m′′ with m′′(s|θh)/m′′(s|θl) ≤ m(s|θh)/m(s|θl),
pm
′′ ≤ pm ≤ p∗ and so ID(m′) ≥ ID(m′′).

�

Proof of Proposition 3. Fix some signal s; in what follows I drop the dependence on
s in the notation, where appropriate. Note that RD′(p

m) ≤ RD(pm) +
∑

θ p
m∆uθ. The

inequality results from the fact that the expected regret of m under menu A′ must be at
most the expected regret associated with continuing to choose the action recommended by
m under menu A. Since the actions recommended by m′ are in the original menu A, we
also have the equality RD′(p

m′) = RD(pm
′
) +

∑
θ p

m′∆uθ. Model m′ must deliver lower ex-
pected regret than m under D′, and so we have RD′(p

m′) ≤ RD′(p
m), which in turn yields∑

θ p
m′(θ)∆uθ ≤

∑
θ p

m(θ)∆uθ.
�

Proof of Corollary 3. Fix some signal s; in what follows I drop the dependence on s in the
notation, where appropriate. Take the actions in A that maximize posterior expected utility
for some posterior. These actions can be ordered22 a1, a2, ..., aK where u(aj, θh) > u(ak, θh)
and u(aj, θl) < u(ak, θl) for j > k; in the binary state case, the utility-maximizing action
is increasing with respect to this order in p(θh). By assumption, no m′ ∈ CD′(M) recom-
mends a′ from D′, and so Proposition 3 implies that for any m ∈ CD(M) and m′ ∈ CD′(M),
pm
′
(θh) ≤ pm(θh). This in turn implies that any a recommended by m from D and any a′′

recommended by m′ from D′ satisfies u(a, θh) ≥ u(a′′, θh), and u(a, θl) ≤ u(a′′, θl).
�

Proof of Proposition 4. Fix some signal s; in what follows I drop the dependence on
s in the notation, where appropriate. Note that if m recommends a∗ from D′, then m recom-
mends a∗ from D, since u′(a∗, θ) ≤ u(a∗, θ) for all θ, and u′(a∗, θ) = u(a∗, θ) for all θ, a 6= a∗.
Similarly, if m′ recommends a 6= a∗ from D, then m′ also recommends a 6= a∗ from D′. Let
kθ = u(a∗, θ)− u′(a∗, θ), and let Θ+ collect the outcomes for which a∗ delivers the maximal
payoff. We have

RD(pm) ≤ RD′(p
m)−

∑
θ∈Θ\Θ+

kθp
m(θ)

≤ RD′(m)

Furthermore, since m′ recommends the same action from both D,D′, we have

RD′(p
m′) = RD(pm

′
)−

∑
θ∈Θ+

min

{
kθ, u(a∗, θ)−max

a6=a∗
u(a, θ)

}
pm(θ)

≤ RD(pm
′
)

Since m /∈ CD(M),m′ ∈ CD(M), RD(pm
′
) < RD(pm), and so the above two inequalities

imply RD′(p
m′) < RD′(p

m), which in turn implies that m /∈ CD(M).

22This ignores actions that produce identical payoffs, which is without loss of generality.
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�

Proof of Corollary 4. Since c < c, there exists p < 1 and p > 0 such that for both
types of DMs, a and a maximize posterior expected utility for posteriors p(θh) > p and
p(θh) < p, respectively. Let D1 and D2 denote the decision problem of type-1 and type-2
DMs, respectively. Note that if pm, pm satisfy

pm > p

pm < p

(k − k)(1− pm) < (v − v)pm

(k − k + c)(1− pm) > (v − v − c)pm

then ID1(m) > ID1(m) and ID2(m) < ID2(m), and so polarization occurs. The above condi-
tions simplify to

pm ∈
(

(k − k)(1− pm)

v − v
,min

{
(k − k + c)(1− pm)

v − v − c
, p

})
pm ∈

(
min

{
1− (v − v)pm

k − k
, p

}
, 1− (v − v − c)pm

k − k + c

)
yielding the bounds with the desired properties. Note also that for pm sufficiently large and
pm sufficiently small, the constraints pm > p, pm < p are not binding, and so for c ∈ (0, c),
there exists m,m satisfying the above conditions.

�

Proof of Proposition 5. Follows directly from Theorem 1.
�

Proof of Proposition 6. Follows directly from Theorem 3.
�

Proof of Corollary 5. Suppose that a is strictly diversified with respect to A. There
exists an action ã that is C-diversified with respect to A satisfying u(a, θ) < u(ã, θ) <
ūA(θ) for all θ. Let M denote any set of interior models for which

∑
θ u(ã, θ)pm(θ|s) <

maxa∈A
∑

θ u(a, θ)pm(θ|s) for all m ∈M . To see that such a set exists, let a∗ ∈ A be any ac-
tion that delivers the maximal payoff some state θ∗; there exists an ε > 0 s.t. for any m∗ s.t.
for any m∗ satisfying pm

∗
(θ∗|s) > 1 − ε,

∑
θ u(ã, θ)pm

∗
(θ∗|s) < maxa∈A

∑
θ u(a, θ)pm

∗
(θ∗|s)

since u(ã, θ∗) < āA(θ∗) = u(a∗, θ∗).

By construction, for C ′ represented by (u,M), we have ã /∈ C ′(A ∪ {ã}). By Proposition 6,
for any M ⊇M and C represented by (u,M), ã /∈ C(A∪ {ã}), which implies a /∈ C(A∪ {a})
as desired.

�

Proof of Lemma 1. For some C-diversified action a ∈ HA and C represented by (u,M)
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given signal s, a ∈ C(A∪ {a}) implies that minm∈M RD′(p
m(·|s)) = ka for D′ = (u,A∪ {a}).

For ad ∈ Ha such that ad ∈ C(A∪{ad}) and ad minimizes kad , it must be the case that there
exists some a∗ ∈ A such that {a∗, ad} ⊆ C(A ∪ {ad}), which in turn implies that

KA(M |s) = kad
= min

m∈M
RD′(p

m(·|s))

= min
m∈M

{∑
θ

max
a′∈A∪{ad}

u(a′, θ)pm(θ|s)− max
a∈A∪{ad}

∑
θ

u(a, θ)pm(θ|s)

}

= min
m∈M

{∑
θ

max
a′∈A∪{ad}

u(a′, θ)pm(θ|s)−max
a∈A

∑
θ

u(a, θ)pm(θ|s)

}

= min
m∈M

{∑
θ

max
a′∈A

u(a′, θ)pm(θ|s)−max
a∈A

∑
θ

u(a, θ)pm(θ|s)

}
= min

m∈M
RD(pm(·|s))

where the third line follows form the fact that {a∗, ad} ⊆ C(A ∪ {ad}) and so both a∗ and
ad maximize expected utility for some m ∈ arg minRD′(p

m(·|s)), and the fourth line follows
from the fact that u(ad, θ) ≤ uA(θ) for all θ.

�

Proof of Proposition 7. To see that for any m∗ ∈ M∗, pm
∗

must lie in the inte-
rior of (max{0, pmT −

√
v},min{1, pmT +

√
v}), suppose not: any sender who proposed

some m∗ incurs negative payoffs, and so can profitably deviate by proposing m′ such that
pm
′
=max{0, pmT −

√
v}, which guarantees a non-negative payoff.

To see that for any m∗ ∈ M∗, pm
∗

cannot lie strictly in the interior of (max{0, pmT −√
v},min{1, pmT +

√
v}), suppose not. It must be the case that all models in M∗ lie strictly

in the interior of (max{0, pmT −
√
v},min{1, pmT +

√
v}); if not, then by Proposition 1 and

the assumption that RD(p) is non-constant in a neighborhood around pmT , the receiver
would not be indifferent between the models in M∗, a contradiction. Since senders receive
strictly positive profits by proposing a model in M∗, it must be the case in such an equi-
librium that all senders propose a model in M∗. Let p = min{pmT , {pm∗ : m∗ ∈ M∗}},
p = max{pmT , {pm∗ : m∗ ∈ M∗}}. Consider m′,m′′ satisfying pm

′
= p − ε, pm′′ = p + ε, for

ε > 0. By Proposition 1 and the assumption that RD(p) is non-constant in a neighborhood
around pmT , the receiver must find at least one of m′, m′′ strictly more decisive than any
model in M∗. Taking ε→ 0, any sender has a profitable deviation to either m′ or m′′.

�

Proof of Proposition 8. Necessity follows from Proposition 2. To show sufficiency, note
that following the proof of Proposition 2, there exists a concave R̃ : M → R such that
R̃(m) = 0 whenever pm = δθ for θ ∈ Θ such that V = −R̃ represents C. Again following the
proof of Proposition 2, the function R : ∆(Θ)→ R satisfying R(pm) = R̃(m) is well defined,
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and is concave with R(δθ) = 0 for any θ ∈ Θ.

All that remains is to show that there exists a proper prediction problem D such that
RD(p) = R(p). By Theorem 1 of Gneiting and Raftery, there exists a proper scoring rule
u where for G ≡ −R, u(p, θ) = G(p) −

∑
θG
∗(p, θ)p(θ) + G∗(p, θ) where G∗(p, θ) satisfies

G(q) ≥ G(p)+
∑

θG
∗(p, θ)(q(θ)−p(θ)) for all p, q ∈ ∆(Θ). This implies that u(δθ, θ) = G(δθ)

and
∑

θ u(p, θ)p(θ) = G(p). Since u is proper, we have

RD(p) =
∑
θ

u(δθ, θ)p(θ)−
∑
θ

u(p, θ)p(θ)

=
∑
θ

G(δθ)p(θ)−G(p)

= R(p)

where the last step follows from the fact that G(δθ) = 0 and G = −R by construction.
�

Proof of Proposition 9. Suppose Θk is not decision-relevant. Let u−k : Θ−k × A → R
satisfy u−k(a, θ−k) = u(a, θ), which is well-defined since u(a, θ) is constant in θk. Let I−kD (·|s)
denote the decisiveness of a model defined on state space Θ−k given a decision problem D
defined on Θ−k. Letting D−k = (A, u−k), note that since Θk is not decision-relevant, for any
m,m′ ∈M , ID(m|s) ≥ ID(m′|s) ⇐⇒ I−kD−k(m−k|s) ≥ I−kD−k(m

′
−k|s).

Now toward a contradiction, suppose that for all m ∈ CD(M), m does not neglect k. By
hypothesis, we know that ID(m|s) > ID(m∅|s), which in turn implies that I−kD−k(m−k|s) >
I−kD−k(m∅|s). By hypothesis, there exists some m∗ ∈ M neglecting k such that λm∗−k + (1−
λ)m∅ = m−k; Corollary 1 implies that I−kD−k(m

∗
−k|s) ≥ I−kD−k(m−k|s), which in turn implies

that ID(m∗|s) ≥ ID(m|s), a contradiction.
�

Proof of Proposition 10 Without loss of generality, suppose that ρ(θh) ≤ pmT (θh|s) <
pmT (θh|s′). This implies that for some k, k′ sk = l and sk′ = h, and that for some k′′, s′k′′ = h.
Consider the following two cases:

Case 1 : s′k = h for all k. Note that in this case, PM |s′ ⊆ PM |s, and so by Proposition
6, KA(M |s) ≤ KA(M |s′).

Case 2 : s′k = l for some k. Note that in this case, PM |s′ = PM |s, and so KA(M |s) ≤
KA(M |s′).

This implies that KA(M |s)−KA(M |s′) ≤ 0 < KA({mT}|s)−KA({mT}|s′).
�
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Proof of Proposition 11. Note that

IED (m) =
∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)−
∑
θ

max
a′∈A

u(a′, θ)ρ(θ)

= max
a∈A

∑
s

∑
θ

u(a, θ)m(s|θ)ρ(θ)−
∑
θ

max
a′∈A

u(a′, θ)ρ(θ)

and so IED (m) is the maximum over a family of functions that are linear in m. This im-
plies that IED is convex. Therefore, IED (λm + (1 − λ)m′) ≤ max{IED (m), IED (m′)}, and so
m,m′ /∈ CE

D (M) =⇒ λm+ (1− λ)m′ /∈ CE
D (M)

�

Proof of Proposition 12. Follows immediately from the fact that IED (m) respects the
Blackwell order over M, and that for m = λmT + (1− λ)m∅, mT is a garbling of m and is
therefore dominated by m in the Blackwell order.

�

Proof of Proposition 13. Note that if m recommends a∗ from D′ for some signal s, then
m recommends a∗ from D for s, since u′(a∗, θ) ≤ u(a∗, θ) for all θ, and u′(a∗, θ) = u(a∗, θ)
for all θ, a 6= a∗. Similarly, if m′ recommends a 6= a∗ from D for some signal s, then m′ also
recommends a 6= a∗ from D′ for s. Let Sa

∗
denote the signals for which m recommends a∗.

The above implies that

IED′(m
′)− IED′(m) =

∑
s

max
a∈A

∑
θ

u′(a, θ)pm
′
(θ|s)pm′(s)−

∑
s

max
a∈A

∑
θ

u′(a, θ)pm(θ|s)pm(s)

=
∑
s

max
a∈A

∑
θ

u(a, θ)pm
′
(θ|s)pm′(s)−

∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)

+
∑
s∈Sa∗

[u(a∗, θ)− u′(a∗, θ)]pm(θ|s)pm(s)

≥
∑
s

max
a∈A

∑
θ

u(a, θ)pm
′
(θ|s)pm′(s)−

∑
s

max
a∈A

∑
θ

u(a, θ)pm(θ|s)pm(s)

=IED (m′)− IED (m)

Since m′ ∈ CE
D (M),m /∈ CE

D (M), IED (m′)− IED (m) ≥ 0 which in turn implies that IED′(m
′)−

IED′(m) ≥ 0 and m /∈ CE
D′(M).

�

Proof of Proposition 14. Suppose Θk is not decision-relevant. Let u−k : Θ−k × A → R
satisfy u−k(a, θ−k) = u(a, θ), which is well-defined since u(a, θ) is constant in θk. Let IE,−kD (·)
denote the ex-ante decisiveness of a model defined on state space Θ−k given a decision prob-
lem D defined on Θ−k. Letting D−k = (A, u−k), note that since Θk is not decision-relevant,
for any m,m′ ∈ M , IED (m) ≥ IED (m′) ⇐⇒ IE,−kD−k (m−k) ≥ IE,−kD−k (m′−k). Now toward a

contradiction, suppose for all m ∈ CE
D (M), m does not neglect k. By hypothesis, we know

that there exists some m∗ ∈M such that λm∗−k+(1−λ)m∅ = m−k for λ ∈ (0, 1). By Propo-

sition 12, we have IE,−kD−k (m∗−k) ≥ IE,−kD−k (m−k), which in turn implies that IED (m∗) > IED (m), a
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contradiction.
�

A.8 Proofs: Characterization and Identification Results

First, we establish a basic observation about our representation.

Lemma 2. C has a decisiveness-maximizing representation (u, P ) ∈ U × P iff

C(A) = arg max
f∈A

U(f |A)

where

U(f |A) = max
p∈P

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

Proof. Suppose f ∗ ∈ C(A). By definition, we have f ∗ ∈ arg maxf∈A
∑

θ u(f(θ))p∗(θ), for
p∗ ∈ arg maxp∈P maxf∈A

∑
θ [u(f(θ))−maxf ′∈A u(f ′(θ))] p(θ). But this implies that

f ∗ ∈ arg max
f∈A

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)

which in turn implies that

p∗ ∈ arg max
p∈P

∑
θ

[
u(f ∗(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

So for any f ∈ A, we have∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ) ≤

∑
θ

[
u(f ∗(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)

≤ max
p∈P

∑
θ

[
u(f ∗(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

and so f ∗ ∈ arg maxf∈A U(f |A) as desired. Now suppose f ∗ ∈ arg maxf∈A U(f |A); we have

f ∗ ∈ arg max
f∈A

max
p∈P

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

This implies that f ∗ ∈ arg maxf∈A
∑

θ u(f(θ))p∗(θ) for some

p∗(θ) ∈ arg max
p∈P

∑
θ

[
u(f ∗(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)
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This in turn implies that

f ∗ ∈ arg max
f∈A

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)

and so

arg max
p∈P

∑
θ

[
u(f ∗(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)

= arg max
p∈P

∑
θ

max
f∈A

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p∗(θ)

= I(P |A)

Therefore, f ∗ ∈ arg maxf∈A
∑

θ u(f(θ))p∗(θ) for some p∗ ∈ I(P |A), and so f ∗ ∈ C(A).

Now, we establish basic results on C under Axiom 1.

Lemma 3. Suppose that f ∗ does not improve A. Under Axiom 1 (IINIA) we have the
following:

1. If f ∗ /∈ C(A ∪ {f ∗}), then C(A ∪ {f ∗}) = C(A)

2. For f ′ 6= f , if f ∈ C(A ∪ {f ∗}) and f ′ /∈ C(A ∪ {f ∗}), then f ′ /∈ C(A)

3. If f ∈ C(A) but f /∈ C(A ∪ {f ∗})), then f ∗ ∈ C(A ∪ {f ∗})

Proof. Assume that f ∗ does not improve A.

To show (1), take any f ∈ C(A∪{f ∗}). Since f ∗ /∈ C(A∪{f ∗}), f 6= f ∗ and therefore f ∈ A;
by Axiom 1, f ∈ C(A). We therefore have C(A) ⊆ C(A∪{f ∗}). Now suppose f ∈ C(A), and
towards a contradiction, suppose that f /∈ C(A∪{f ∗}). Note that it cannot be the case that
f ′ ∈ A, f ′ ∈ C(A,∪{f ∗}) since Axiom 1 would then imply that f ∈∈ C(A,∪{f ∗}). Therefore,
it must be the case that f ∗ ∈ C(A ∪ {f ∗}), a contradiction. Therefore, C(A ∪ {f ∗}) ⊆ C(A)
and so C(A ∪ {f ∗}) = C(A).

To show (2), suppose not; f ′ ∈ C(A). By Axiom 1, f ∈ C(A), and again applying Ax-
iom 1, we have f /∈ C(A ∪ {f ∗}) since f ′ /∈ C(A ∪ {f ∗}), a contradiction.

To show (3), suppose not; f ∗ /∈ C(A ∪ {f ∗}). Then we must have f ′ ∈ C(A ∪ {f ∗}),
where f ′ 6= f and f ′ ∈ A. By Axiom 1, this implies that f ′ ∈ C(A). But since f ∈ C(A),
Axiom 1 in turn implies that f ∈ C(A ∪ {f ∗}), a contradiction.

Say that u : ∆(Z)→ R represents the restriction of C to menus of constant acts if u(fa(θ)) ≥
u(fb(θ)) iff fa ∈ C({fa, fb}) for all fa, fb ∈ Xc. The following lemma states that under Axioms
1-4, such a u exists and is linear.

Lemma 4. Suppose that Axioms 1, 2, 3, and 4 hold. Then there exists a linear u : ∆(Z)→
R that represents the restriction of C to menus of constant acts.
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Proof. Define the binary relation �∗ on Xc as follows: for fa, fb ∈ Xc, fb � fa if fb ∈
C({fb, fa}). Note that �∗ is transitive. To see this, suppose that fc �∗ fb, fb �∗ fa.
We have fb ∈ C({fb, fa}), fc ∈ C({fc, fb}). If fa ∈ C({fc, fb, fa}), then by Axiom 2
(Monotonicity), we have fb ∈ C({fc, fb, fa}) and subsequently fc ∈ C({fc, fb, fa}); if fa /∈
C({fc, fb, fa}), since fa does not improve fb, Lemma 3 implies fc ∈ C({fc, fb, fa}). Therefore,
we have fc ∈ C({fc, fb, fa}); since fb does not improve fc Axiom 1 (IINIA) implies that
fc ∈ C({fc, fa}) =⇒ fc �∗ fa.

So �∗ is a complete and transitive preference relation on Xc that agrees with the restric-
tion of C to menus of constant acts. Furthermore, �∗ inherits continuity and independence
properties from Axiom 3 (Mixture Continuity) and Axiom 4 (Mixture Independence): in
particular, �∗ satisfies

1. For fa, fb, fc ∈ Xc, The sets {α ∈ [0, 1] : αfa + (1− α)fb �∗ fc} and {α ∈ [0, 1] : fc �∗
αfa + (1− α)fb} are closed.

2. For fa, fb, fc ∈ Xc, α ∈ (0, 1), fa �∗ fb ⇐⇒ αfa + (1− α)fc �∗ αfb + (1− α)fc.

Therefore, by the Expected Utility Theorem (von-Neumann and Morgenstern 1994) there
exists a linear u : ∆(Z) → R that represents the restriction of C to menus of constant
acts.

Say that Axiom 7 fails for state θ∗ if exists fa, fb, fc, with fa = C(fa, fb), fb = C(fb, fc),
such that for all λ ∈ (0, 1), for act g satisfying gλ(θ) = q(λa + (1 − λ)b) for θ = θ∗ and
gλ(θ) = q(c) for θ 6= θ∗, there exists a menu A that neither improves nor is improved by
g(θ∗) for which fb ∈ A but also g ∈ C(A).

For any collection of states Θ ∈ 2Θ, we say that C satisfies the support condition for Θ
if for all fa, fb, fc ∈ Xc s.t. fa = C(fa, fb), fb = C(fb, fc), there exists λ∗ ∈ (0, 1) such that for
all λ ∈ (0, λ∗), act g with g(θ) = λfa(θ) + (1−λ)fb(θ) for θ ∈ Θ, g(θ) = fc(θ) for θ /∈ θ∗, and
any A that neither improves nor is improved by g(θ) for θ ∈ Θ, g /∈ C(A) whenever fb ∈ A.

Lemma 5. Suppose that Axioms 1, 2, 3, 4, and 7 hold. If C does not satisfy the support
condition for Θ ∈ 2Θ, then {f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ} ⊆ C(A).
If Axiom 7 fails for state θ∗, then {f ∈ A : ∀ g ∈ A, g(θ∗) does not improve f(θ∗)} ⊆ C(A).

Proof. By Lemma 4, there exists a linear u : ∆(Z) → R that represents the restriction of
C to menus of constant acts. Additionally, since Axiom 6 holds, there exists z, z′ ∈ Z s.t.
u(z) > u(z′). Take some z ∈ arg maxz∈Z u(z) and z ∈ arg minz∈Z u(z); by linearity of u, we
can without loss of generality take u(z) = 1, u(z) = −1.

For any c ∈ [−1, 1], let q(c) = 1−c
2
◦ z + 1+c

2
◦ z; by linearity of u, u(q(c)) = c. let fc

denote the constant act with fc(θ) = q(c) for all θ. Consider the constant act f−1/2.We
introduce the following notation for any A ∈ A, f ∈ A:

• Let fAmax denote the maximal act corresponding toA, satisfying fAmax(θ) = q(maxf∈A u(f(θ))),
and define the minimal act fAmin analogously.
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• Let f be the normalized act satisfying f(θ) = q(1
4
[u(f(θ))−u(fAmax(θ))]); since 1

4
[u(f(θ))−

u(fAmax(θ))] ∈ [−1, 1] for any f ∈ A, f is well-defined. Let A = {f : f ∈ A} collect the
normalized acts in A.

We will first show that if C does not satisfy the support condition for Θ ∈ 2Θ, then
{f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ} ⊆ C(A).

Claim 1. Suppose that C does not satisfy the support condition for Θ. Then for the act g
satisfying g(θ) = q(0) for θ ∈ Θ and g(θ) = q(−1) for θ /∈ Θ, g ∈ C(g, f0).

Proof of Claim 1. Since C does not satisfy the support condition for Θ, there there ex-
ists fa, fb, fc, with a > b > a, such that for all λ ∈ (0, 1), for act gλ satisfying gλ(θ) =
q(λa + (1 − λ)b) for θ ∈ Θ and gλ(θ) = q(c) for θ /∈ Θ, there exists a menu A for which
u◦fAmax = λa+(1−λ)b for which fb ∈ A but also gλ ∈ C(A). By Axiom 4 (Mixture Indepen-
dence), we can without loss of generality take b = 0 and a− c < 1. Now, note that for φ =
−c ∈ (0, 1), by Axiom 4 (Mixture Independence) we have φgλk+(1−φ)f0 ∈ C(φA+(1−φ)f0).

Noting that u ◦ fφA+(1−φ)f0
min > c, the above implies that for all λ < φ, there exists an act g̃λ

satisfying g̃λ(θ) = q(λa) for θ ∈ Θ and g̃λ(θ) = q(φc) for θ /∈ Θ and a menu A satisfying
u ◦ fAmax = λa and u ◦ fAmin > c, for which f0 ∈ A but also g̃λ ∈ C(A).

Now take a sequence λk → 0, where λk ∈ (0, φ) for all k. The above implies the existence of
acts g̃λk satisfying

g̃λk(θ) =

{
q(λka) θ ∈ Θ

q(φc) otherwise

and a sequence of menus Ak satisfying u ◦ fAkmax = λka and fAkmin > c, where f0 ∈ Ak but
g̃λk ∈ C(Ak). Let Bk = Ak \ g̃λk . Let ĝλk denote the act satisfying

ĝλk(θ) =

{
q(λka) θ ∈ Θ

q(φc+ λka) otherwise

and for all θ 6= θ∗, let hθ,k denote the acts satisfying

hθ,k(θ
′) =

{
q(λka) θ′ = θ

q(−1 + λka) otherwise

Let Hk = {hθ,k}θ/∈Θ. Note that since u ◦ ĝλk ≥ u ◦ g̃λk , by Axiom 2 (Monotonicity),
ĝλk ∈ C(Bk ∪ {g̃λk}). Furthermore, since a − c < 1, by construction u(hθ,k(θ

′)) ≤ c for

θ′ 6= θ, and so since u ◦ fAmin ≥ c and therefore u ◦ fBk∪{ĝλk}min ≥ c each hθ,k is dominated by an
act from Bk ∪ {ĝλk}. Axiom 2 (Monotonicity) then implies that ĝλk ∈ C(Bk ∪Hk ∪ {ĝλk});
Axiom 1 (IINIA) subsequently implies ĝλk ∈ C(Hk ∪ {ĝλk , f0}), noting that Bk does not
improve Hk by construction.
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Now, note that for all k, 1
2
ĝλk + 1

2
f−λka = ġ, and 1

2
hθ,k + 1

2
f−λk = hθ, where

ġ(θ) =

{
q(0) θ ∈ Θ

q(1/2φc) otherwise
hθ(θ

′) =

{
q(0) θ′ = θ

q(−1/2) otherwise

Let H = {hθ}θ/∈Θ By Axiom 4 (Mixture Independence), we therefore have ġ ∈ C(H∪{ġ, 1
2
f0+

1
2
f−λka}), which can be rewritten as ġ ∈ C(H ∪ {ġ, λkf−1/2a + (1− λk)f0}). Since this holds

for λk → 0, Axiom 3 (Mixture Continuity) implies that ġ ∈ C(H ∪ {ġ, f0}), and Axiom 1
(IINIA) in turn implies ġ ∈ C({ġ, f0}), noting that H does not improve f0 by construction.

Now, note that for act g satisfying g(θ) = 0 for θ = θ∗, g(θ) = −1 for θ 6= θ∗, ġ =
(1

2
φc)g + (1 − 1

2
φc)f0 and therefore by Axiom 4 (Mixture Independence) we have ġ ∈

C({ġ, f0}) =⇒ g ∈ C({g, f0}) as desired.
4

Claim 2. For A ∈ A, g ∈ A, suppose that for all f ∈ A \ {f}, g(θ) improves f(θ) for all
θ ∈ Θ. Then g ∈ C(A).

Proof of Claim 2. Take g ∈ A where g(θ) improves f(θ) for all f ∈ A \ {g} and θ ∈ Θ.
Consider the normalized menu A; we have u(f(θ)) < u(g(θ)) = 0 for all f ∈ A, θ ∈ Θ. Let
v = maxθ∈Θ maxf∈A\{g} u(f(θ)) < 0, and let γ = 1

1−v ∈ (0, 1). Consider act h satisfying

h(θ) =

{
q(0) θ ∈ Θ

q(−1) otherwise

For any act f , let f v = 1
2
(γf+(1−γ)h)+ 1

2
f− v

v−1
, and for any menu A, let Av = {f v : f ∈ A}.

By construction, we have u ◦ f v ≤ 0 for all f ∈ A \ {g}, whereas u(gv(θ)) = v
v−1

> 0 for all

θ ∈ Θ and u(gv(θ)) ≤ 0 for all θ /∈ Θ.

Now by Claim 1, for the act g̃ satisfying g̃(θ) = q(0) for θ ∈ Θ and g̃(θ) = q(−1) for
θ /∈ Θ, we have g̃ ∈ C({g̃, f0}). Noting that Av \ {gv} does not improve f0, and that gv

dominates g̃, we have

g̃ ∈ C({g̃, f0}) =⇒ g̃ ∈ C({g̃, f0} ∪ Av \ {gv}) by Axioms 1, 2 (IINIA, Monotonicity)

=⇒ gv ∈ C({f0} ∪ Av) by Axiom 2 (Monotonicity)

=⇒ gv ∈ C(Av) by Axiom 1 (IINIA)

where for the the last step we note that by construction f0 does not improve Av. By Axiom 4
(Mixture Independence) and Axiom 2 (Monotonicity), gv ∈ C(Av) =⇒ g ∈ C(A) as desired.

4

Now, Take any A ∈ A, f ∈ A, and suppose for all g ∈ A, g(θ) does not improve f(θ)
for all θ ∈ Θ. By Axiom 4 (Mixture Independence), we can without loss of generality as-
sume u(f(θ)) < 1 for all θ. For any α ∈ (0, 1], αf1 + (1 − α)f improves A \ {f}, and so
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Claim 2 implies that

αf1 + (1− α)f ∈ C({αf1 + (1− α)f} ∪ A \ {f})

Since the above holds for all α ∈ (0, 1], Axiom 3 (Mixture Continuity) implies that f ∈ C(A)
as desired; we have {f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ} ⊆ C(A).

Now, suppose that Axiom 7 fails for state θ∗. Note that by definition, this holds only if
C does not satisfy the support condition for {θ∗}; the above then implies that {f ∈ A : ∀ g ∈
A, g(θ∗) does not improve f(θ∗)} ⊆ C(A).

Lemma 6. Suppose that Axioms 1, 2, 3, 4, and 7 hold, and suppose that C does not satisfy
the support condition for the collection of states F ⊆ 2Θ and satisfies the support condition
for 2Θ \ F , where F contains {θ∗} for some θ∗ ∈ Θ. Then

C(A) =
⋃

Θ∈F

{f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ}.

Proof. By Lemma 4, there exists a linear u : ∆(Z) → R that represents the restriction of
C to menus of constant acts. Additionally, since Axiom 6 holds, there exists z, z′ ∈ Z s.t.
u(z) > u(z′). Take some z ∈ arg maxz∈Z u(z) and z ∈ arg minz∈Z u(z); by linearity of u, we
can without loss of generality take u(z) = 1, u(z) = −1.

For any c ∈ [−1, 1], let q(c) = 1−c
2
◦ z + 1+c

2
◦ z; by linearity of u, u(q(c)) = c. let fc

denote the constant act with fc(θ) = q(c) for all θ. Consider the constant act f−1/2.We
introduce the following notation for any A ∈ A, f ∈ A:

• Let fAmax denote the maximal act corresponding toA, satisfying fAmax(θ) = q(maxf∈A u(f(θ))),
and define the minimal act fAmin analogously.

• Let f be the normalized act satisfying f(θ) = q(1
4
[u(f(θ))−u(fAmax(θ))]); since 1

4
[u(f(θ))−

u(fAmax(θ))] ∈ [−1, 1] for any f ∈ A, f is well-defined. Let A = {f : f ∈ A} collect the
normalized acts in A.

Let gθ denote the act satisfying gθ(θ
′) = q(0) for θ′ = θ and gθ(θ

′) = q(−1) for θ′ 6= θ.

Claim 1. Suppose that C does not satisfy the support condition for the collection of states
F ⊆ 2Θ and satisfies the support condition for 2Θ\F , where F contains {θ∗} for some θ∗ ∈ Θ.
Then for all Θ∗ ⊆ Θ s.t. θ∗ ∈ Θ∗ and Θ \Θ∗ /∈ F , for any c < 0, fc /∈ C({fc} ∪ {gθ}θ∈Θ∗).

Proof of Claim 1. Towards a contradiction, suppose not: there exists c < 0 such that
fc ∈ C({fc} ∪ {gθ}θ∈Θ∗).

First, consider the case where Θ̃ ≡ Θ \ Θ∗ = ∅. By Axiom 2 (Monotonicity), for any
c′ ∈ (c, 0), fc′ ∈ C({fc′ , fc} ∪ {gθ}θ∈Θ∗). Also, by Lemma 5, we have gθ∗ ∈ C({fc} ∪ {gθ}θ∈Θ∗)
and gθ∗ ∈ C({fc′ , fc}∪{gθ}θ∈Θ∗). Since by construction fc′ does not improve {fc}∪{gθ}θ∈Θ∗ ,
Axiom 1 (IINIA) implies that fc ∈ C({fc′ , fc} ∪ {gθ}θ∈Θ∗), which implies a contradiction by
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Axiom 2 (Monotonocity).

Now, consider the case where Θ̃ is non-empty; by hypothesis, C satisfies the support con-
dition for Θ̃. This implies that there exists a ∈ (0,−1/2c) such that for act h̃ satisfying
h̃(θ) = q(a) for θ ∈ Θ̃, h̃(θ) = q(1/2c + a) for θ /∈ Θ̃, we have h̃ /∈ C({h̃, f0} ∪ {g̃θ}θ∈Θ∗),
where g̃θ(θ

′) = q(a) for θ′ = θ and g̃θ(θ
′) = q(−1 + a) for θ′ 6= θ. By Axiom 4 (Mixture

Independence) we have 1
2
h̃ + 1

2
f−a /∈ C({1

2
h̃ + 1

2
f−a, f−1/2a} ∪ {1

2
g̃θ + 1

2
f−a}θ∈Θ∗). By Axiom

4 (Mixture Independence) this in turn implies that for act h satisfying

h(θ) =

{
q(0) θ ∈ Θ̃

q(1/2c) otherwise

we have h /∈ C({h, f−a} ∪ {g̃θ}θ∈Θ∗), which in turn implies, by Axiom 1 (IINIA), that
h /∈ C({h, f−a, fc} ∪ {g̃θ}θ∈Θ∗). Note, however, since h(θ) dominates fc, by Axiom 2 (Mono-
tonicity), fc ∈ C({fc} ∪ {g̃θ}θ∈Θ∗) =⇒ h ∈ C({h, fc} ∪ {g̃θ}θ∈Θ∗). Now, since f−a does not
improve {h, fc} ∪ {g̃θ}θ∈Θ∗ , by Lemma 3, we have f−a ∈ C({h, f−a, fc} ∪ {g̃θ}θ∈Θ∗)

Now, by Lemma 5, we have gθ∗ ∈ C({h, fc} ∪ {gθ}θ∈Θ∗) and also gθ∗ ∈ C({h, f−a, fc} ∪
{gθ}θ∈Θ∗), and so noting again that f−a does not improve {h, fc}∪{gθ}θ∈Θ∗ , Axiom 1 (IINIA)
implies that fc ∈ C({h, f−a, fc}∪{gθ}θ∈Θ∗). However, since −a > 1/2c > c, and we also have
fa ∈ C({h, f−a, fc} ∪ {gθ}θ∈Θ∗), by Axiom 2 (Monotonicity) we have a contradiction.

4

Now suppose that f /∈
⋃

Θ∈F{f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ}. We
will show that f /∈ C(A), which in conjunction with Lemma 5 completes the proof. Let
Θ∗ ≡ {θ ∈ Θ s.t. fAmax(θ) improves f(θ)}; by construction, we have θ∗ ∈ Θ∗, and also that
C satisfies the full support condition for Θ̃ ≡ Θ \Θ∗.

Consider the normalized menuA; we have u(f(θ)) < 0 for all θ ∈ Θ∗. Let v = maxθ∈Θ∗ u(f(θ)) <
0, and let γ = 1

1−v ∈ (0, 1). Consider act h satisfying

h(θ) =

{
q(0) θ ∈ Θ∗

q(−1) otherwise

For any act f , let f v = γf + (1 − γ)h, and for any menu A, let Av = {f v : f ∈ A}. By

construction, we have u ◦ f v ≤ − v
v−1

< 0 for all θ ∈ Θ∗, and u(fA
v

max(θ)) = 0 for all θ ∈ Θ∗.
We have

f−v/(v−1) /∈ C({f−v/(v−1)} ∪ {gθ}θ∈Θ∗) by Claim 1

=⇒ f v /∈ C({f v} ∪ {gθ}θ∈Θ∗) by Axiom 2 (Monotonicity)

=⇒ f v /∈ C(Av ∪ {gθ}θ∈Θ∗) by Axiom 1 (IINIA)

=⇒ f v /∈ C(Av)

where the last line follows from Axiom 1 (IINIA) and Axiom 2 (Monotonicity), noting that
For each θ ∈ Θ∗ there exists an gv ∈ Av that dominates gθ. Axiom 4 (Mixture Independence)
then implies that f /∈ C(A) as desired.
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A key object in our proof will be a real map on the set of negative utility acts ϕ : RΘ
− → R.

For c ∈ R, let ξc be the constant utility act satisfying ξc(θ) = c for all θ. We say that ϕ is C-
additive if for all ξ ∈ RΘ

− and constant utility acts ξc ∈ RΘ with c < 0, ϕ(ξ+ξc) = ϕ(ξ)+ϕ(ξc).
We say that ϕ is sublinear if it is convex and positively homogenous.

Lemma 7. If ϕ : RΘ
− → R is increasing, sublinear, and C-additive, then there exists a non-

empty convex subset L of positive linear functionals on RΘ such that ϕ(ξ) = maxL∈L L(ξ)
for all ξ ∈ RΘ

−, and L(ξ−1) = ϕ(ξ−1) for all L ∈ L.

Proof. By sublinearity of ϕ, proposition G.3 in Ok (2007) implies that there exists a nonempty

convex subset L̃ of linear functionals on RΘ such that ϕ(ξ) = maxL∈L̃ L(ξ) for all ξ ∈ RΘ
−.

Take any ξ ∈ Rθ
−−l; we can find some c < 0 and ξ′ ∈ RΘ

− s.t. ξ′ + ξc = ξ. There exists a
linear functional Lξ′+ξc on RΘ s.t. ϕ ≥ Lξ′+ξc on RΘ

− and ϕ(ξ′ + ξc) = Lξ′+ξc(ξ
′ + ξc). By

C-additivity of ϕ and linearity of L, we have

ϕ(ξ′) + ϕ(ξc) = Lξ′+ξc(ξ′) + Lξ′+ξc(ξc)

Since Lξ′+ξc(ξ
′) ≤ ϕ(ξ′) and Lξ′+ξc(ξc) ≤ ϕ(ξc), the above implies Lξ′+ξc(ξc) = ϕ(ξc) =⇒

Lξ(ξc) = ϕ(ξc), which in turn implies Lξ(ξ−1) = ϕ(ξ−1) by linearity of L and homogeneity of ϕ

Now, take L = co{Lξ : ξ ∈ RΘ
−−}. By construction, L is a non-empty convex subset of

linear functionals that satisfies L(ξ−1) = ϕ(ξ−1) for all L ∈ L. To see that each L ∈ L is
positive, take any ξ ≤ 0; since ϕ is increasing we have L(ξ) ≤ ϕ(ξ) ≤ ϕ(0) = 0, where the
last equality follows from the fact that ϕ is sublinear.

Finally to see that ϕ(ξ) = maxL∈L L(ξ) for all ξ ∈ RΘ
−, take any ξ ∈ RΘ

−. By construc-
tion, L(ξ) ≤ ϕ(ξ) for all L ∈ L. Also, for c < 0, we have Lξ+ξc ∈ L, with

Lξ+ξc(ξ + ξc) = ϕ(ξ + ξc)

Lξ+ξc(ξ) + Lξ+ξc(ξc) = ϕ(ξ) + ϕ(ξc) by C-additivity

Lξ+ξc(ξ) = ϕ(ξ) since Lξ+ξc(ξ−1) = ϕ(ξ−1)

and so ϕ(ξ) = maxL∈L L(ξ).

Lemma 8. If ϕ : RΘ
− → R is increasing, sublinear, and C-additive, with ϕ(ξ−1) < 0, then

there exists a non-empty, closed P ⊂ ∆(Θ) s.t.

ϕ(ξ) = max
p∈P

∑
θ

ξ(θ)p(θ)

for all ξ ∈ RΘ
−.

Proof. By Lemma 7, non-empty convex subset L of positive linear functionals on RΘ such
that ϕ(ξ) = maxL∈L L(ξ) for all ξ ∈ RΘ

−, and L(ξ−1) = ϕ(ξ−1) for all L ∈ L. We can asso-
ciate each L ∈ L with qL ∈ RΘ such that L(ξ) = max qL : L ∈ L

∑
θ qL(θ)ξ(θ) for all ξ ∈ RΘ.

Since L is positive, we have qL ≥ 0; furthermore, L(ξ−1) = ϕ(ξ−1) < 0 =⇒
∑

θ qL(θ) =
−ϕ(ξ−1) > 0.
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For each L, define pL = −qL/ϕ(ξ−1); by the above, pL ≥ 0 with
∑

θ pL(θ) = 1; we have ϕ(ξ) =
maxpL∈L∈L

∑
θ ξ(θ)pL(θ). Let P = cl({pL : L ∈ L}); we have p ≥ 0,

∑
θ p(θ) = 1 and so

therefore P ⊆ ∆(Θ), and furthermore, since maxp∈P
∑

θ ξ(θ)p(θ) = maxpL∈L∈L
∑

θ ξ(θ)pL(θ),
we have ϕ(ξ) = maxp∈P

∑
θ ξ(θ)p(θ).

We are now ready to prove Theorem 1.

Theorem 1. C satisfies Axioms 1–5 if and only if it has a decisiveness-maximizing rep-
resentation (u, P ). C additionally satisfies Axioms 6 and 7 if and only if u and P satisfy
Assumptions 5 and 6, respectively, and for any (u′, P ′) representing C, there exists constants
α > 0, β such that u′ = αu+ β, and ext(P ′) = ext(P ).

Proof. We first prove the characterization result. Necessity of the axioms follow directly
from the definition of the representation. The proof of sufficiency proceeds in four steps.

Step 1: Construction of u : ∆(Z)→ R.

By Lemma 4, there exists a linear u : ∆(Z) → R that represents the restriction of C to
menus of constant acts; that is if u(fa(θ)) ≥ u(fb(θ)) iff fa ∈ C({fa, fb}) for all fa, fb ∈ Xc.
In particular, since u is linear, we have u ∈ U .

Step 2: Characterization without Axioms 6 and 7.

We will now show that in the case where Axiom 6 (Non-Triviality) does not hold, C has
a decisiveness-maximizing representation. Suppose that Axiom 6 (Non-Triviality) does not
hold. This implies that for all z, z′ ∈ Z, u(z) = u(z′). By linearity of u, we then have that
for q, q′ ∈ ∆(Z), u(q) = u(q′), and so for any f, f ′ ∈ X, f(θ) ∈ C({f(θ), f ′(θ)}). Axiom 2
(Monotonicity) then implies that C(A) = A for all A ∈ A. Note that by taking any P ∈ P
we are done; C has a decisiveness-maximizing representation (u, P ).

The remainder of the proof will deal with the case where Axiom 6 (Non-Triviality) holds.
There exists z, z′ ∈ Z s.t. u(z) > u(z′); that is, u satisfies Assumption 5. Take some
z ∈ arg maxz∈Z u(z) and z ∈ arg minz∈Z u(z); by linearity of u, we can without loss of gen-
erality take u(z) = 1, u(z) = −1.

Now, we will show that in the case where Axiom 7 (No Certainty) does not hold, C has
a decisiveness-maximizing representation.

For any collection of states Θ ∈ 2Θ, we say that C satisfies the support condition for Θ
if for all fa, fb, fc ∈ Xc s.t. fa = C(fa, fb), fb = C(fb, fc), there exists λ∗ ∈ (0, 1) such that for
all λ ∈ (0, λ∗), act g with g(θ) = λfa(θ) + (1−λ)fb(θ) for θ ∈ Θ, g(θ) = fc(θ) for θ /∈ θ∗, and
any A that neither improves nor is improved by g(θ) for θ ∈ Θ, g /∈ C(A) whenever fb ∈ A.

Suppose that Axiom 7 (No Certainty) does not hold. This implies that C does not sat-
isfy the support condition for some {θ∗}, θ∗ ∈ Θ, and so there exists a collection of states
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F ⊆ 2Θ containing {θ∗} for which C does not satisfy the support condition and for which C
satisfies the support condition for 2Θ \ F . Lemma 6 then implies that

C(A) =
⋃

Θ∈F

{f ∈ A : ∀ g ∈ A, g(θ) does not improve f(θ)∀ θ ∈ Θ}.

For each Θ ∈ F , let pΘ ∈ ∆(Θ) be a model-induced posterior that has support only on Θ.
Letting P = {pΘ}Θ∈F ∈ P , note that (u, P ) represents C(A), since pΘ ∈ I(P |A) iff there
exists f ∈ A for which u(f(θ)) ≥ u(g(θ)) for all g ∈ A, θ ∈ Θ, in which case f ∈ C(A).

The remainder of the proof will deal with the case where Axiom 7 (No Certainty) holds.

Step 3: Construction of U : X ×A → R.

Here, our goal is construct a utility map U : X × A → R from choice data that repre-
sents C. We begin by introducing notation that will be useful in this construction.

For any c ∈ [−1, 1], let q(c) = 1−c
2
◦ z + 1+c

2
◦ z; by linearity of u, u(q(c)) = c. let fc

denote the constant act with fc(θ) = q(c) for all θ. Consider the constant act f−1/2. By
Axiom 7 (No Certainty), there exists a constant k > −1/2 such that for all θ, where given
the act gθ satisfying

gθ(θ
′) =

{
= q(k) θ′ = θ

= q(−1) otherwise

we have gθ /∈ C(A) if f−1/2 ∈ A for any A that neither improves nor is improved by fk. Let
E = {gθ}θ∈Θ.

Fix k as defined above. We introduce the following notation for any A ∈ A, f ∈ A:

• Let fAmax denote the maximal act corresponding toA, satisfying fAmax(θ) = q(maxf∈A u(f(θ))),
and define the minimal act fAmin analogously.

• Let f be the normalized act satisfying f(θ) = q(1
4
[u(f(θ))−u(fAmax(θ))]); since 1

4
[u(f(θ))−

u(fAmax(θ))] ∈ [−1, 1] for any f ∈ A, f is well-defined. Let A = {f : f ∈ A} collect the
normalized acts in A.

• Let ḟ be the k-normalized act given by ḟ = λf−1/2 + (1 − λ)f , for λ = −2k ∈ [0, 1).

Let Ȧ = {ḟ : f ∈ A} collect the k-normalized acts in A.

• Let fk = 1
2
fk + 1

2
f−k, with Ak = {fk : f ∈ A}.

We are now ready to construct our utility map.

Claim 1. There exists a map U : X ×A → R satisfying, for all A ∈ A, f ∈ A,

U(f |A) = c

for c satisfying {ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek)
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that also represents C: that is, for any f ∈ C(A) iff U(f |A) > U(f ′|A) for any f ′ ∈ A.

Proof of Claim 1. We first establish several elementary results.

Observation 1. Fixing any f ∈ A, for any B ∈ A neither improves nor is improved by

f0, gkθ /∈ C(B ∪ {ḟk}). To see this, fix any f ∈ A, B ∈ A, where B neither improves nor is

improved on by f0. Note also that for all θ, u(f
˙
A
k

max(θ)) = u(q(1
2
(1+2k)u(fAmax(θ)))) = 0 since

u(fAmax(θ)) = 0, and so ḟk does not improve B. By construction and linearity of u we have

u(fAmin(θ)) ≥ −1/2 for all θ, and so f−1/2 does not improve f ; by linearity of u this in turn

implies that ḟk−1/2 does not improve ḟk. Now, since B ∪ {ḟk, ḟk−1/2} neither improves nor is

improved by fk, we have gθ /∈ C(B∪{ḟk, ḟk−1/2}), which in turn implies that gθ /∈ C(B∪{ḟk})
by IINIA, as desired. ◦

Observation 2. For any A ∈ A, Ek does not improve Ȧk, and vice versa. To see this, note

that by linearity of u u(fE
k

max(θ)) = u(1
2
q(k) + 1

2
q(−k)) = 0 for all θ and also u(f Ȧ

k

max(θ)) =

u(q(1
2
(1 + 2k)u(fAmax(θ)))) = 0 since u(fAmax(θ)) = 0 for all θ. ◦

Observation 3. f ∈ C(A) ⇐⇒ ḟk ∈ C(Ȧk). To see this, take any f , A, and de-
fine fA−max to be the act satisfying fA−max(θ) = q(−u(fAmax)) Note that by linearity of u,

u(f(θ)) = u((1
4
f + 1

4
fA−max + 3

4
f0)(θ)). We have, by Axiom 4 (Mixture Independence)

f ∈ C(A) ⇐⇒
(

1

4
f +

1

4
fA−max +

3

4
f0

)
∈ C

(
1

4
A+

1

4
fA−max +

3

4
f0

)
⇐⇒ f ∈ C(A) by Axiom 2 (Monotonicity)

⇐⇒ ḟk ∈ C(Ȧk)

where the last step follows from Axiom 4 (Mixture Independence) and the fact that ḟk =
1
2
(1− λ)f + 1

2
λf−1/2 + 1

2
f−k.

Now, we show that U is well defined.

Observation 4. For each f, A, there exists a unique c ∈ [−1, 1] such that {ḟk, ḟkc } =

C({ḟk, ḟkc } ∪ Ek), and furthermore c ≤ 0.

To see this, Fix some A ∈ A, f ∈ A. By Axiom 3 (Mixture Continuity), the sets

W = {α ∈ [0, 1] : αḟk−1 + (1− α)ḟk1 ∈ C({αḟk−1 + (1− α)ḟk1 } ∪ {ḟk} ∪ Ek)}

W = {α ∈ [0, 1] : ḟk ∈ C({αḟk−1 + (1− α)ḟk1 } ∪ {ḟk} ∪ Ek)}

are closed. Since u(ḟk1 ) = 1
2

+ k > 0 and the payoffs of ḟk and acts in Ek are bounded

from above by 0, Axiom 2 (Monotoncity) guarantees that ḟk1 ∈ C({ḟk1 } ∪ {ḟk} ∪ Ek) and

so W is non-empty. Also, noting that Ek ∩ C({ḟk−1} ∪ {ḟk} ∪ Ek) = ∅ by Observation
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1, Axiom 2 (Monotonicity) guarantees that ḟk ∈ C({ḟk−1} ∪ {ḟk} ∪ Ek), and so W is

nonempty. Note also Ek ∩ C({αḟk−1 + (1 − α)ḟk1 } ∪ {ḟk} ∪ Ek) = ∅ for all α ∈ [0, 1];

to see this, note that for α ∈ [0, 1/2), αḟk−1 + (1 − α)ḟk1 does not improve Ek, and by Ob-

servation 1 Ek ∩ C({αḟk−1 + (1− α)ḟk1 } ∪ {ḟk} ∪ Ek) = ∅, whereas for α ∈ (1/2, 1] we have

Ek ∩C({αḟk−1 + (1−α)ḟk1 }∪ {ḟk}∪Ek) = ∅ by Axiom 2 (Monotonicity). This implies that

C({ḟk, ḟkc } ∪ Ek) = {ḟk, ḟkc } iff c ∈ W ∩W .

Axiom 2 (Monotonicity) guarantees that W and W are convex; this implies that W and
W nonempty intervals, the union of which is equal to [0, 1]. This in turn implies that
inf W = supW , and that αk ≡ inf W = supW is the unique member of W ∩W , and so

there exists a unique c satisfying C({ḟk, ḟkc } ∪ Ek) = {ḟk, ḟkc }.

Finally, to see that c ≤ 0, suppose not: c > 0. Then ḟkc strictly dominates ḟk, and so

C({ḟk, ḟkc } ∪ Ek) = {ḟk, ḟkc } would violate Axiom 2 (Monotonicity). ◦

Now we show that this U(f |A) represents C, in particular that f ∈ C(A) ⇐⇒ U(f |A) ≥
U(f ′|A) for all f ∈ A.

(=⇒). Suppose f ∈ C(A). Towards a contradiction, suppose that, U(f |A) < U(f ′|A)
for some f ′ ∈ A. This implies that there exists c < c′ with U(f |A) = c, U(f ′|A) = c′ such

that ḟ ′k, ḟkc′ ∈ C({ḟ ′k, ḟkc′} ∪ Ek) and ḟk, ḟkc ∈ C({ḟk, ḟkc } ∪ Ek). By Observation 4, we know

that ḟkc , ḟ
k
c′ do not improve Ek or Ȧk. By Axiom 2 (Monotonicity), we have

fkc /∈ C({ḟk, ḟkc , ḟkc′} ∪ Ek)

=⇒ ḟk /∈ C({ḟk, ḟkc , ḟkc′} ∪ Ek) by Axiom 1 (IINIA)

=⇒ ḟk /∈ C({ḟk, ḟkc′} ∪ Ek) by Lemma 3, since ḟkc /∈ C({ḟk, ḟkc , ḟkc′} ∪ Ek)

=⇒ ḟk /∈ C({ḟkc′} ∪ Ȧk ∪ Ek) By Axiom 1 (IINIA), since Ȧk does not improve Ek

=⇒ ḟk /∈ C({ḟkc′} ∪ Ȧk) By Lemma 3, since Ek ∩ C({ḟk, ḟkc , ḟkc′} ∪ Ek) = ∅

By Observation 3, f ∈ C(A) =⇒ ḟk ∈ C(Ȧk). Since ḟk /∈ C({ḟc′} ∪ Ȧk), and ḟkc′ does not

improve Ȧk, Lemma 3 implies that ḟkc′ ∈ C({ḟkc′} ∪ Ȧk). Since Ek ∩ C({ḟkc′} ∪ Ȧk ∪ Ek) = ∅
by Observation 1, by Lemma 3 we have ḟkc′ ∈ C({ḟkc′}∪ Ȧk ∪Ek); applying Axiom 1 (IINIA),

this in turn implies that ḟ ′k ∈ C({ḟkc′}∪ Ȧk ∪Ek). Again applying Axiom 1 (IINIA) we have

ḟ ′k ∈ C({ḟkc′} ∪ Ȧk) and also ḟ ′k ∈ C(Ȧk).

Now, since ḟk, ḟ ′k ∈ C(Ȧk), Axiom 1 (IINIA) implies that ḟk ∈ C({ḟkc′}∪Ȧk), a contradiction.

(⇐=). We proceed by showing the contrapositive: if f /∈ C(A) and f ′ ∈ C(A), then
U(f |A) < U(f ′|A). Suppose that f /∈ C(A) and f ′ ∈ C(A). Towards a contradiction, suppose
that U(f |A) ≥ U(f ′|A). This implies that there exists c ≥ c′ with U(f |A) = c, U(f ′|A) = c′
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such that ḟ ′k, ḟkc′ ∈ C({ḟ ′k, ḟkc′} ∪ Ek) and ḟk, ḟkc ∈ C({ḟk, ḟkc } ∪ Ek).

First, note that ḟkc ∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc }∪Ek). To see this, suppose not; if ḟkc
k /∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc }∪

Ek), then by Axiom 1 (IINIA) we ḟk /∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc } ∪ Ek). This implies that at least

one of ḟ ′k, ḟkc′ must belong to C({ḟ ′k, ḟkc′ , ḟk, ḟkc }∪Ek), since Ek∩C({ḟ ′k, ḟkc′ , ḟk, ḟkc }∪Ek) = ∅,

and so by Axiom 1 (IINIA) we have ḟ ′k, ḟkc′ ∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc } ∪ Ek). In turn, by Axiom

2 (Monotonicity), ḟkc ∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc } ∪ Ek), a contradiction; it must be the case that

ḟkc ∈ C({ḟ ′k, ḟkc′ , ḟk, ḟkc } ∪ Ek), and therefore ḟk ∈ C({ḟ ′k, ḟc′ , ḟk, ḟkc } ∪ Ek) by Axiom 1

(IINIA). Again applying Axiom 1 (IINIA), we have ḟk ∈ C({ḟ ′k, ḟk} ∪ Ek).

Now, f ′ ∈ C(A) implies that ḟ ′k ∈ C(Ȧk) by Observation 3. By Lemma 3, since Ek ∩
C(Ȧk ∪Ek) = ∅, ḟ ′k ∈ C(Ȧk ∪Ek), and by Axiom 1 (IINIA), ḟ ′k ∈ C({ḟ ′k, ḟk} ∪Ek). Now,

since ḟ ′k ∈ C(Ȧk ∪Ek) and ḟ ′k, ḟk ∈ C({ḟ ′k, ḟk}∪Ek), by Axiom 1 (IINIA) ḟk ∈ C(Ȧk ∪Ek)

which in turn implies ḟk ∈ C(Ȧk). By Observation 3, this implies that f ∈ C(A), a contra-
diction.

4
Step 4: Construction of ϕ : RΘ

− → R. Now, we show that there exists an increasing, su-
perlinear, and C-additive map ϕ : RΘ

− → R such that for all A ∈ A, f ∈ A, and fAmax the
maximal act constructed from A,

ϕ(u ◦ f − u ◦ fAmax) = U(f |A)

which also satisfies ϕ(ξ−1) = −1.

Note that {(u ◦ f − u ◦ fAmax) : A ∈ A, f ∈ A} = [−2, 0]Θ. Note also that for any f, A,
f ′, A′ s.t. (u ◦ f − u ◦ fAmax) = (u ◦ f ′ − u ◦ fA′max), f = f ′ and A = A′, which in turn implies
U(f |A) = U(f ′|A′) by construction of U . Therefore, we can define the map ψ : [−2, 0]Θ → R
by taking

ψ(u ◦ f − u ◦ fAmax) = U(f |A) for all A ∈ A, f ∈ A

We first establish that ψ is positively homogenous on its domain.

Claim 2: For all ξ ∈ [−2, 0]Θ, α > 0 s.t. αξ ∈ [−2, 0]Θ.

Proof of Claim 2. Take ξ ∈ [−2, 0]Θ, α ∈ (0, 1). There exists A ∈ A, f ∈ A such that
u ◦ f − u ◦ fAmax = ξ. Take f ′ = αf + (1− α)f0, A′ = αA + (1− α)f0; by linearity of u, we
have u ◦ f ′ − u ◦ fA′max = αξ. By definition of ψ, we have ψ(ξ) = U(f |A), ψ(αξ) = U(f ′|A′),
and by definition of U , we have

{ḟk, ḟkc} = C({ḟk, ḟkc} ∪ Ek)

{ḟ ′k, ḟkc′} = C({ḟk, ḟkc′} ∪ Ek) for c = U(f |A), c′ = U(f ′|A′)
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By linearity of u, we have that for all θ, f
k
(θ) = q(1

2
(1+2k)u(f(θ))). Again applying linearity

of u, this implies that ḟ ′k(θ) = αf
k
(θ) + (1− α)f0. Note also that ḟkc (θ) = q(1

2
(1 + 2k)c) for

all θ by linearity of u, and so again applying linearity of u, αḟkc + (1− α)f0 = ḟkαc. We have

{ḟk, ḟkc} = C({ḟk, ḟkc} ∪ Ek) =⇒ {ḟ ′k, ḟkαc} = C({ḟ ′k, ḟkαc} ∪ (αEk + (1− α)f0))

=⇒ {ḟ ′k, ḟkαc} = C({ḟ ′k, ḟkαc} ∪ (αEk + (1− α)f0) ∪ Ek)

=⇒ {ḟ ′k, ḟkαc} = C({ḟ ′k, ḟkαc} ∪ Ek)

The first step follows from Axiom 4 (Mixture Independence); the second step follows from
Lemma 3, the fact that Ek does not improve αEk+(1−α)f0, and the fact that by Observation

1, Ek∩C({ḟ ′k, ḟkαc}∪(αEk+(1−α)f0)∪Ek) = ∅; the third step follows from Axiom 1 (IINIA).
So we have U(f ′|A′) = c′ = αc = αU(f |A), and so ψ(αξ) = U(f ′|A′) = αU(f |A) = ψ(ξ).

Now, take any ξ ∈ [−2, 0]Θ, α > 0 s.t. αξ ∈ [−2, 0]Θ. Note that

ψ(ξ) = ψ(
1

α
αξ)

ψ(ξ) =
1

α
ψ(αξ) by the previously established result

αψ(ξ) = ψ(αξ)

4
Now, define ϕ : RΘ

− → R as follows:

ϕ(ξ) =
1

α
ψ(αξ)

for any α > 0 s.t. αξ ∈ [−2, 0]−Θ. To see that ϕ is well defined, take any β > α > 0 s.t.
αξ, βξ ∈ [−2, 0]Θ. We have, by Claim 2 (positive homogeneity of ψ), 1

α
ψ(αε) = 1

α
ψ(α

β
βψ) =

1
β
ψ(ξ).

Claim 3 : ϕ is positively homogenous. Also, for any a < 0, ϕ(ξa) = 1
4
a.

Proof of Claim 3. To see that ϕ is positively homogenous, take ξ ∈ RΘ
−, α > 0, by pick-

ing some β > 0 s.t. βαξ, βξ ∈ [−2, 0]Θ. We have, by definition of ϕ and by Claim 2 (positive
homogeneity of ψ), ϕ(αξ) = 1

β
ψ(βαξ) = 1

β
α(βξ) = αϕ(ξ).

To show the second statement, start by taking any a ∈ [−2, 0]. There exists some A ∈ A,
f ∈ A such that u ◦ f − u ◦ fAmax = ξc. Since f = q ◦ (1

4
(u ◦ f − u ◦ fAmax)), linearity of u

implies that f = f1/4a. Therefore, we have ḟk = ḟk1/4a, and in particular

{ḟk, ḟk1/4a} = C({ḟk, ḟk1/4a} ∪ Ek)

which implies that ϕ(ξa) = U(f |A) = 1
4
a.
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To see that this holds for any a < 0, fix some a < 0, and fix some β > 0 s.t. βξa ∈
[−2, 0]Θ. We have, by positive homogeneity of ϕ, and the previously established result,
ϕ(ξa) = ϕ( 1

β
βξa) = 1

β
ϕ(βξa) = 1

β
β 1

4
a = 1

4
a.

4

Claim 4 : ϕ is C-additive.

Proof of Claim 4. To see that ϕ is C-additive, we first show that C-additivity holds for
any ξ ∈ [−2, 0]Θ, a ∈ [−1, 0] s.t. ξ + ξa ∈ [−2, 0]Θ: that is, for such ξ, a, we have
ϕ(ξ + ξa) = ϕ(ξ) + ϕ(ξa).

Fix such ξ, a. There exists f, g ∈ Xc, A = {f, g} s.t. u ◦ f − u ◦ fAmax = ξ. Now consider
f ′ = 1

2
f + 1

2
fa A

′ = {f ′, 1
2
g+ 1

2
f0}; since ξ+ ξa ≤ 0, we have u ◦ f +a−u ◦ fAmax ≤ 0 which in

turn implies, by linearity of u, that u◦f ′ ≤ u◦(1
2
g+ 1

2
f0). Therefore, u◦f ′−u◦fA′max = 1

2
ξ+ 1

2
a.

We therefore have

{ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek)

{ḟ ′k, ḟkc′} = C({ḟ ′k, ḟkc′} ∪ Ek)

for c = U(f |A) = ϕ(ξ), c′ = U(f ′|A′) = ϕ(1
2
ξ + 1

2
ξa).

Let ã = 1
4
a. Since u◦f ′−u◦fA′max = 1

2
ξ+ 1

2
a, and f ′ = q◦(1

4
(u◦f ′−u◦fA′max)) = q◦(1

4
(1

2
ξ+ 1

2
a))

and f = q ◦ (1
4
ξ), by linearity of u we have f ′ = 1

2
f + 1

2
fã, and since ḟk(θ) = q(1

2
(1 + 2k)f(θ))

for all f , again applying linearity of u we have ḟ ′k(θ) = 1
2
ḟk(θ) + 1

2
ḟkã . Linearity of u also

implies, for any constant act fc, that 1
2
ḟkc + 1

2
ḟkã = ḟk1/2c+1/2ã. We have, by Axiom 4 (Mixture

Independence)

{ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek)

=⇒ {ḟ ′k, ḟk1/2c+1/2ã} = C({ḟ ′k, ḟk1/2c+1/2ã} ∪
1

2
Ek +

1

2
ḟkã )

Now, note that c ≤ maxθ u(f(θ)); if not, then fc would dominate f and by linearity of

u, ḟkc would dominate ḟk, which contradicts {ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek) by Axiom 2
(Monotonicity). This in turn implies that c ≤ maxθ

1
4
ξ(θ), and since ξ + ξa ≤ 0, we have

c − ã ≤ 0. Therefore ḟk1/2c+1/2ã does not improve Ek, and so by Observation 1, we have

Ek ∩ C({ḟ ′k, ḟk1/2c+1/2ã} ∪Ek) = ∅. Also, by Observation 1 and Axiom 4 (Mixture Indepen-

dence), we have (1
2
Ek + 1

2
ḟkã ) ∩ C({ḟ ′k, ḟk1/2c+1/2ã} ∪

1
2
Ek + 1

2
ḟkã ) = ∅. Therefore, by Axiom

1 (IISIA), we have

{ḟ ′k, ḟk1/2c+1/2ã} = C({ḟ ′k, ḟk1/2c+1/2ã} ∪
1

2
Ek +

1

2
ḟkã )

=⇒ {ḟ ′k, ḟk1/2c+1/2ã} = C({ḟ ′k, ḟk1/2c+1/2ã} ∪ Ek)

Therefore, U(f ′|A′) = c′ = 1
2
c + 1

2
ã = 1

2
U(f |A) + 1

2
ã. This in turn implies, by Claim 3

(homogeneity of ϕ), that ϕ(ξ + ξa) = ϕ(ξ) + ã. Note also that by Claim 3, we have for any
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a < 0, ϕ(ξa) = 1
4
a. This implies that ϕ(ξ + ξa) = ϕ(ξ) + ϕ(ξa) as desired.

Now, take any ξ ∈ RΘ
−, a ≤ 0 s.t. ξ+ξa ≤ 0. There exists some β > 0 s.t. β(ξ+ξa) ∈ [−2, 0]Θ

and βa ∈ [−1, 0]. We have

ϕ(ξ + ξa) =
1

β
ϕ(β(ξ + ξa))

=
1

β
ϕ(βξ) +

1

β
ϕ(βξa)

= ϕ(ξ) + (ξa)

where the first and third equalities follow from Claim 3 (homogeneity of ϕ), and the second
equality follows from the preceding result.

4

Claim 5: ϕ is sublinear.

Proof of Claim 5. By Claim 3, we know that ϕ is positively homeogenous. All that re-
mains is to show that ϕ is convex: that is for any ξ, ξ′ ∈ RΘ

−, α ∈ (0, 1) ϕ(αξ + (1− α)ξ′) ≤
αϕ(ξ) + (1− α)ϕ(ξ′).

Start by showing that the result holds for any ξ, ξ′ ∈ [−2, 0]Θ such that ϕ(ξ) = ϕ(ξ′). Fix such
ξ, ξ′ and λ ∈ (0, 1). There exists acts f, g, f ′, g′, satisfying u◦f ≤ u◦g, u◦f ′ ≤ u◦g′, and with
ξ = u◦f−u◦fAmax, ξ′ = u◦f ′−u◦fA′max for A = {f, g}, A′ = {f ′, g′}. Let f ′′ = λf+(1−λ)f ′,
g′′ = λg+(1−λ)g′, A′′ = {f ′′, g′′}. By linearity of u, we have u◦f ′′+u◦fA′′max = λξ+(1−λ)ξ.
We therefore have ϕ(ξ) = U(f |A), ϕ(ξ′) = U(f ′|A′), and ϕ(λξ+(1−λ)ξ′) = U(f ′′|A′′). Since
u◦f ′′−u◦fA′′max = λ(u◦f ′′−u◦fA′′max)+(1−λ)(u◦f ′′−u◦fA′′max), we have f ′′ = λf+(1−λ)f ′,

which in turn implies, by linearity of u, that ḟ ′′k = λḟk + (1− λ)ḟ ′k.

Now towards a contradiction, suppose that ϕ(λξ+ (1−λ)ξ′) > ϕ(λξ) +ϕ((1−λ)ξ′) = ϕ(ξ).
This implies that for c = U(f |A) = U(f ′|A′) < c′′ = U(f ′′|A′′), we have

{ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek)

{ḟ ′k, ḟkc } = C({ḟ ′k, ḟkc } ∪ Ek)

{ḟ ′′k, ḟkc′′} = C({ḟ ′′k, ḟkc′′} ∪ Ek)

First, note that {ḟk, ḟ ′k} ∈ C({ḟk, ḟ ′k, ḟkc } ∪ Ek); if not, then ḟkc ∈ C({ḟk, ḟ ′k, ḟkc } ∪ Ek)

and so nothing that ḟ ′k does not improve Ek, Axiom 1 (IINIA) would imply that ḟk ∈
C({ḟk, ḟ ′k, ḟkc } ∪ Ek), a contradiction. Axiom 5 (Mixture Aversion) then implies that

ḟk ∈ C({ḟk, ḟ ′k, ḟ ′′k, ḟkc } ∪ Ek)

=⇒ ḟkc ∈ C({ḟk, ḟ ′k, ḟ ′′k, ḟkc } ∪ Ek)

=⇒ ḟkc ∈ C({ḟ ′′k, ḟkc } ∪ Ek)

83



where, noting that noting that {ḟk, ḟ ′k, ḟ ′′k} do not improve Ek, the second line follows from

Axiom 1 (IINIA) and the fact that {ḟk, ḟkc } ∈ C({ḟk, ḟkc } ∪ Ek), and the third line follows
from Axiom 1 (IINIA).

Now, note that ḟ ′′k ∈ C({ḟkc , ḟkc′′ , ḟ ′′k}∪Ek); if not, then ḟkc′′ /∈ C({ḟkc , ḟkc′′ , ḟ ′′k}∪Ek) by Axiom

1 (IINIA), which implies that ḟkc ∈ C({ḟkc , ḟkc′′ , ḟ ′′k}∪Ek) since Ek ∩C({ḟkc , ḟkc′′ , ḟ ′′k}∪Ek) =
∅; this implies a contradiction by Axiom 2 (Monotonicity). Applying Axiom 1 (IINIA),

ḟ ′′k ∈ C({ḟkc , ḟkc′′ , ḟ ′′k} ∪ Ek) =⇒ ḟ ′′k ∈ C({ḟkc , ḟ ′′k} ∪ Ek). So we have

{ḟ ′′k, ḟkc } = C({ḟ ′′k, ḟkc } ∪ Ek)

a contradiction since c′′ > c and {ḟ ′′k, ḟkc′′} = C({ḟ ′′k, ḟkc′′} ∪ Ek); we must therefore have
ϕ(λξ + (1− λ)ξ′) ≤ ϕ(λξ) + ϕ((1− λ)ξ′).

Now extend this result to any ξ, ξ′ ∈ RΘ
− such that ϕ(ξ) = ϕ(ξ′). Take any such ξ, ξ′,

and λ ∈ (0, 1). There exists α > 0 s.t. αξ, αξ′ ∈ [−2, 0]Θ; We have

ϕ(λξ + (1− λ)ξ) =
1

α
ϕ(α(λξ + (1− λ)ξ′))

≤ 1

α
λϕ(αξ) +

1

α
(1− λ)ϕ(αξ′)

= λϕ(ξ) + (1− λ)ϕ(ξ′)

where the first and third equalities follow from Claim 3 (homogeneity of ϕ) and the inequal-
ity follows from the preceding result.

Finally, consider ξ, ξ′ ∈ RΘ
− with ϕ(ξ) > ϕ(ξ′), and λ ∈ (0, 1). Take a = ϕ(ξ′) − ϕ(ξ) < 0,

and define ξ̃ = ξ + ξ4a; by Claim 4, we have ϕ(ξ̃) = ϕ(ξ) + a = ϕ(ξ′). Now by the preceding
result, we have

ϕ(λξ + (1− λ)ξ′ + λξ4a) = ϕ(λξ̃ + (1− λ)ξ′)

≤ λϕ(ξ̃) + (1− λ)ϕ(ξ′)

= λ(ϕ(ξ) + a) + (1− λ)ϕ(ξ′)

and so by C-additivity of ϕ, we have ϕ(λξ + (1− λ)ξ′) ≤ λϕ(ξ) + (1− λ)ϕ(ξ′).
4

Claim 6: ϕ is increasing.

Proof of Claim 6. First, show that ϕ is increasing on [−2, 0]Θ. Take ξ, ξ′ ∈ [−2, 0]Θ with
ξ ≥ ξ′. There exists A,A′ ∈ A, f ∈ A, f ∈ A′, such that ξ = u◦f−u◦fAmax, ξ′ = u◦f ′−u◦fA′max
we have ϕ(ξ) = U(f |A) = c, ϕ(ξ′) = U(f ′|A′) = c′, where

{ḟk, ḟkc } = C({ḟk, ḟkc } ∪ Ek)

{ḟ ′k, ḟkc } = C({ḟ ′k, ḟkc } ∪ Ek)
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Since f = q ◦ (1
4
(u ◦ f − u ◦ fAmax)), f ′ = q ◦ (1

4
(u ◦ f ′ − u ◦ fA′max)) and ξ ≥ ξ′, we have

u ◦ f ≥ u ◦ f ′, and therefore u ◦ ḟk ≥ u ◦ ḟ ′k.

Now, note that ḟk ∈ C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪ Ek). If not, then by Axiom 1 (IINIA), ḟkc /∈
C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪Ek); since Ek ∩ C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪Ek) = ∅, we must have that one of

ḟ ′k, ḟkc′ belongs to C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪ Ek), which by Axiom 1 (IINIA), implies that ḟ ′k ∈
C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪ Ek), a contradiction by Axiom 2 (Monotinicity) since u ◦ ḟk ≥ u ◦ ḟ ′k.

By Axiom 1 (IINIA), ḟk ∈ C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪Ek) =⇒ ḟkc ∈ C({ḟk, ḟkc , ḟ ′k, ḟkc′} ∪Ek), and
so by Axiom 2 (Monotinicity), it must be the case that c ≥ c′, and so we have ϕ(ξ) ≥ ϕ(ξ′).

Now to extend this result to all of RΘ
−1, take any ξ, ξ′ ∈ RΘ

−1 with ξ ≥ ξ′. Take α > 0
s.t. αξ, αξ′ ∈ [−2, 0]Θ; we have

ϕ(ξ) =
1

α
ϕ(αξ)

≤ 1

α
ϕ(αξ′)

= ϕ(ξ′)

by Claim 3 (homogeneity of ϕ) and the preceding result.
4

By Claims 3-6, we are possession of a increasing, sublinear, C-additive, ϕ : RΘ
− → R with

ϕ(ξ−1) < 0; we also have U(f |A) = ϕ(u ◦ f − u ◦ fAmax) for all A ∈ A, f ∈ A. By Lemma 8,
there exists P ⊆ P s.t. ϕ(ξ) = maxp∈P

∑
θ ξ(θ)p(θ), and therefore

U(f |A) = max
p∈P

∑
θ

(u ◦ f − u ◦ fAmax)(θ)p(θ)

= max
p∈P

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

for all A ∈ A, f ∈ A. Furthermore, by Claim 1, U represents C, and so for any A ∈ A,

C(A) = arg max
f∈A

U(f |A),

for U(f |A) = max
p∈P

∑
θ

[
u(f(θ))−max

f ′∈A
u(f ′(θ))

]
p(θ)

To see that P satisfies Assumption 6, suppose not; there exists δθ∗ ∈ P . By the above, we
have that for any f ∈ A s.t. f(θ∗) > g(θ∗) for all g ∈ A, f ∈ C(A), which contradicts Axiom
7 (No Certainty).

Lemma 2 then implies that C has a decisiveness-maximizing representation (u, P ), where
u satisfies Assumption 5 and P satisfies Assumption 6.
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Now we prove the identification result. Fix some (u, P ) and (u, P ′) that represent C, where
C additionally satisfies Axiom 7 (No Certainty) Axiom 6 (Non-Triviality). Since C satisfies
Axiom 6 (Non-Triviality), u, u′ must satisfy Assumption 5, and since C satisfies Axiom 7
(No Certainty), P, P ′ satisfy Assumption 6. The proof of the identification result proceeds
in the following four steps.

Step 5: Identification of u.

First we show that u is identified up to an affine transformation using choice data on menus
of constant acts. For any constant act f ∈ Xc, let qf ∈ ∆(Z) denote the objective lottery
induced by f . Note that for any finite menu of constant acts, A ⊂ Xc,

C(A) = arg max
f∈A

u(qf )

= arg max
f∈A

∑
z∈Z

u(z)qf (z)

Therefore, for any u, the restriction of C to menus of constant acts has a von-Neumann-
Morgenstern (v-NM) representation, and so by the Expected Utility Theorem (von-Neumann
and Morgenstern 1994), u is identified up to an affine transformation. As result, we can as-
sume without loss for the remainder of the proof that u = u′.

Step 6: Utility acts and preliminaries.

Under Assumption 5, there exists z, z ∈ Z s.t. u(z) = minz∈Z u(z), u(z) = maxz∈Z u(z),
with u(z) < u(z). Using the identification result from Step 1, we can without loss take an
affine transformation of u so that u(z) = 0, u(z) = 1. Note that we can associate each
act f ∈ X, with a utility act ξf ∈ [0, 1]Θ satisfying ξf (θ) = u(f(θ)) for all θ. Note that
{ξf : f ∈ X} = [0, 1]Θ. For the remainder of this proof we will work with choice data over
menus of utility acts, dropping the f superscript.

For any constant utility act ξc delivering an interior utility value c ∈ (0, 1), define

B(ξc|P ) =
⋂
p∈P

{
ξ ∈ [0, 1]Θ : ξ · p < c

}
B(ξc|P ) =

⋂
p∈P

{
ξ ∈ [0, 1]Θ : ξ · p ≤ c

}
Note that B(ξc|P ) = cl(B(ξc|P )). To see this, take any ξ ∈ [0, 1]Θ such that for all p ∈ P ,
ξ · p ≤ c; we will show that ξ is a limit point of elements in B(ξc|P ). Consider the sequence
(ξk) satisfying ξk = (1− 1/k)ξ; we have ξk ∈ B(ξc|P ) and ξk → ξ. Since B(ξc|P ) ⊂ B(ξc|P ),
B(ξc|P ) = cl(B(ξc|P )).

Step 7: Identification of B.

Now, we will show that B, and subsequently B, is identified from choice data. Fix any
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ξc and ξ. If ξ, ξc ∈ A and ξ ∈ C(A), then there must exist a model-induced posterior p ∈ P
s.t. ξ · p ≥ c, and so ξ /∈ B(ξc|P ). For any λ ∈ (0, 1), let ξλ = (1− λ)ξ + λξc. The preceding
implies that if ξλ, ξc ∈ A and ξλ ∈ C(A), ξ /∈ B(ξc|P ). We will show that if ξ /∈ B(ξc|P ), there
will always exist a constant λ ∈ (0, 1) and menu A containing ξc, ξλ such that ξλ ∈ C(A),
which delivers identification of B(ξc|P )C and therefore B(ξc|P ).

Suppose that there exists some p∗ ∈ P s.t. ξ · p ≥ c. Take any sequence εk → 0, where
εk ∈ (0, 1− c) for all k. For all k, there exists λk ∈ (0, 1) satisfying maxθ∈Θ ξλk(θ) < c + εk;
fix such a sequence of λk. For each k, define a set of acts Ek = (ξk,θ)θ∈θ where for each θ, k,

ξk,θ(θ
′) =

{
0 θ 6= θ′

c+ εk θ = θ′

Define a sequence of menus Ak = Ek ∪ {ξλk , ξc}. Note that for all Ak,

I(P |Ak) = arg max
p∈P

{
max
ξ∈Ak

∑
θ∈Θ

[
ξ(θ)− max

ξ′∈Ak
ξ′(θ)

]
p(θ)

}

= arg max
p∈P

{
max
ξ∈Ak

∑
θ∈Θ

[ξ(θ)− (c+ εk)] p(θ)

}

= arg max
p∈P

{
max
ξ∈Ak

ξ · p
}

Since P is closed and no p ∈ P places probability 1 in any state by Assumption 6, there
exists some K such that for all k > K, maxp∈P

{
ξk,θ · p

}
≤ c for all θ. In particular, this

implies that for k > K,

max
p∈P

{
ξk,θ · p

}
≤ c ≤ ξλk · p∗

which in turn implies that for all k > K, any p ∈ I(P |Ak) must choose ξλk from Ak. Using
choice data on such sequences of menus, for any ξc, ξ, we can determine whether ξ ∈ B(ξc|P ),
therefore identifying B(ξc|P ) and subsequently B(ξc|P ), the closure of B(ξc|P ).

Formally, since (u, P ) and (u′, P ′) both represent C, it must be the case that B(ξc|P ) =
B(ξc|P ′) since B is identified from C; this implies that cl(B(ξc|P )) = cl(B(ξc|P ′)) =⇒
B(ξc|P ) = B(ξc|P ′).

Step 8. Identification of Extreme Models.

Let Pext = {ext(P ) : P ∈ P} denote the collection of extreme points formed from ele-
ments in P , and let Pconv = {P ∈ P : P is convex} denote the set of convex elements in
P . First, we will show that co : Pext → Pconv is one-to-one. To see this, note that for
P ∈ Pext, ext(co(P )) = P : p ∈ P =⇒ p ∈ ext(co(P )) since all points in P are extreme
by construction. Also, for P ∈ Pconv, since P is a convex, closed subset of ∆(Θ) and is
therefore compact, by the Minkowski–Caratheodory Theorem co(ext(P )) = P . This implies
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that co : Pext → Pconv is one-to-one as desired.

Now, towards a contradiction, suppose that ext(P ) 6= ext(P ′). Define Pconv = co(ext(P ))
and P ′conv = co(ext(P ′)); by the above result, we have Pconv 6= P ′conv. Since P is closed and
therefore compact, co(P ) is also compact. Further, since ext(P ) = ext(co(P )), we have

Pconv = co(ext(P ))

= co(ext(co(P )))

= co(P )

where the last step follows from the Minkowski–Caratheodory Theorem. Therefore Pconv is
compact, and by the same argument, so is P ′conv. Since Pconv 6= P ′conv, we can without loss of
generality take there to be p ∈ Pconv \ P ′conv. By a separating hyperplane theorem (Dunford
and Schwartz, 1957, Theorem V.2.10), there exists a nonzero ξ ∈ RΘ and a c ∈ R such that

max
p′∈P ′conv

ξ · p′ < c < ξ · p

Without loss of generality, we can take an affine transformation of ξ and c so that ξ ∈ [0, 1]Θ

and c ∈ (0, 1). This then implies that B(ξc|Pconv) 6= B(ξc|P ′conv). By Proposition 1, the fact
that (u, P ) and (u, P ′) represent C implies that (u, Pconv) and (u, P ′conv) also represent C.
Since B is identified from C, it must be the case that B(ξc|Pconv) = B(ξc|P ′conv); we have a
contradiction and it must be the case that ext(P ) = ext(P ′).

Now, we give a proof of Theorems 2 and 3.

Theorem 2. C satisfies Axioms 1–6 if and only if it has a decisiveness maximizing repre-
sentation (u, P ), where u satisfies Assumption 5. Also, for any (u′, P ′) representing C, there
exists constants α > 0, β such that u = αu′ + β, and ct(P ) = ct(P ′).

Proof. The proof for the characterization result is contained in Steps 1–4 from the proof for
Theorem 1.

To show the identification property, fix some (u, P ), (u′, P ′) that represent C. Following
Step 5 from the proof of Theorem 1, we know that u is identified up to an affine transforma-
tion, and as a result we can assume without loss for the remainder of the proof that u = u′.
Following Step 6 from the proof of Theorem 1, construct the set of utility acts [0, 1]Θ; for
the remainder of this proof we will work with choice data over menus of utility acts.

Fix any θ ∈ Θ. Let ξc denote an constant utility act satisfying ξc(θ
′) = c ∈ (0, 1) for

all θ′ ∈ Θ. Take any sequence εk → 0 satisfying εk ∈ (0, 1 − c) for all k. Define a sequence
of utility acts ξk,θ where for each k,

ξk,θ(θ
′) =

{
0 θ 6= θ′

c+ εk θ = θ′

Define a sequence of menus Ak = {ξc, ξk,θ}. We will show that δθ /∈ P iff there exists K s.t.

for all k > K, ξk,θ /∈ C(Ak). First, suppose that δθ /∈ P . Since P is closed by Assumption 2,

88



there exists some p < 1 such that maxp∈P p(θ) ≤ p < 1 and so for all p ∈ P , ξk,θ ·p ≤ p(c+εk).
Since p < 1 and εk → 0, there exists K s.t. for all k > K, p(c+ εk) < c, which implies that
ξk,θ /∈ C(Ak). Conversely, suppose that δθ ∈ P . This implies δθ ∈ I(P |A) for any menu A,

and so ξk,θ ∈ C(Ak) for all k.

Now towards a contradiction, suppose that ct(P ) 6= ct(P ′). Without loss of generality,
we can take there to be some δθ ∈ P \ P ′. By the above result this means that (u, P ) and
(u, P ′) cannot represent the same choice correspondence C, a contradiction; ct(P ) = ct(P ′)
as desired.

Theorem 3. Suppose C, C ′ are represented by (u, P ), (u, P ′), respectively. If co(P ) ⊆
co(P ′), then C ′ is more diversification-averse than C. Furthermore, if C ′ is more diversification-
averse than C and P ′ satisfies Assumption 6, then co(P ) ⊆ co(P ′).

Proof. Begin by proving the first statement. Suppose that co(P ) ⊆ co(P ′), and suppose that
for some h ∈ HA, h /∈ C(A ∪ {h}). By Lemma 4, �∗ is represented by a linear u, and note
that h /∈ C(A ∪ {h}) implies that u satisfies Assumption 5. Take some z ∈ arg maxz∈Z u(z)
and z ∈ arg minz∈Z u(z); since u satisfies Assumption 5 and by linearity of u, we can without
loss of generality take u(z) = 1, u(z) = −1. For any c ∈ [−1, 1], let q(c) = 1−c

2
◦ z + 1+c

2
◦ z;

by linearity of u, u(q(c)) = c. let fc denote the constant act with fc(θ) = q(c) for all θ. Let
f be the normalized act satisfying f(θ) = q(1

4
[u(f(θ))− u(fAmax(θ))]). Let A = {f : f ∈ A}

collect the normalized acts in A.

Since h ∈ HA, there exists q, q ∈ ∆(Z) with u(q) − u(q) ≡ c ≤ 0 such that 1
2
u(fAmax(θ)) +

1
2
u(q) = 1

2
u(g(θ)) + 1

2
u(q) for all θ, which in turn implies that u(g(θ)) = u(fAmax(θ)) + c, and

subsequently g = fc̃, for c̃ = 1
4
c. Note that

max
p∈P

∑
θ

[
u(h(θ))− max

f ′∈A∪{h}
u(f ′(θ))

]
p(θ) = max

p∈P

∑
θ

[
u(h(θ))

]
p(θ)

= max
p∈P ′

∑
θ

[
u(h(θ))

]
p(θ)

= max
p∈P ′

∑
θ

[
u(h(θ))− max

f ′∈A∪{h}
u(f ′(θ))

]
p(θ)

whereas for any f ∈ A,

max
p∈P

∑
θ

[
u(f(θ))− max

f∈A∪{f}
u(f(θ))

]
p(θ) = max

p∈P

∑
θ

[
u(h(θ))

]
p(θ)

≤ max
p∈P ′

∑
θ

[
u(f(θ))

]
p(θ)

= max
p∈P ′

∑
θ

[
u(h(θ))− max

f∈A∪{f}
u(f(θ))

]
p(θ)

since co(P ) ⊆ co(P ′). By Lemma 2, we have h /∈ C(A ∪ {h}) =⇒ h /∈ C ′(A ∪ {h}). Since
C, C ′ satisfy Axiom 4 (Mixture Independence), we have h /∈ C(A ∪ {h}) ⇐⇒ h /∈ C(A ∪ h),
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and likewise h /∈ C ′(A∪{h}) ⇐⇒ h /∈ C ′(A∪h), and so h /∈ C(A∪{h}) =⇒ h /∈ C ′(A∪{h})
as desired.

Now prove the second statement. Suppose that C ′ is more diversification averse than C,
and P ′ satisfies Assumption 6. Towards a contradiction, suppose that co(P ) 6⊆ co(P ′); this
guarantees the existence of some p ∈ co(P ) \ co(P ′), where p ∈ P . By a separating hy-
perplane theorem (Dunford and Schwartz, 1957, Theorem V.2.10), there exists a nonzero
ξ ∈ RΘ and c ∈ R s.t.

max
p′∈P ′

ξ · p′ < c < ξ · p

Without loss of generality we can take c ∈ (−1, 1). Since P ′ satisfies Assumption 6, there
exists k > c s.t. for acts (gθ)θ∈Θ satisfying

gθ(θ
′) =

{
q(k) θ′ = θ

q(−1) otherwise

such that (u ◦ gθ) · p′ < c for all p′ ∈ P ′ and all θ. By rescaling, we can without loss of
generality take ξ ∈ [−1, 1]Θ with maxθ ξ(θ) < k satisfying the above inequality. Let f denote
an act satisfying u◦f = ξ, and let A = {f}∪{gθ}θ∈Θ; we that h ≡ fc is C-diversified wrt. A.

Since c < ξ · p, h /∈ C(A ∪ {h}). Note, however, since maxp′∈P ′ ξ · p′ < c and also
maxp∈P ′(u ◦ gθ) · p′ < c, h = C ′(A ∪ {h}). This implies that C ′ is not more diversifica-
tion averse than C, a contradiction; we have co(P ) ⊆ co(P ′) as desired.

90


	Introduction
	Framework and Decisiveness Criterion
	General Setup
	Examples
	Additional Maintained Assumptions

	Properties of Selection Under Decisiveness
	Characterization of Model Selection Rule
	Applications
	Overprecision
	Confirmation Bias
	Investor Sentiment

	Comparison to Alternative Selection Criteria
	Decisiveness vs. Parsimony
	Decisiveness vs. Blackwell Ordering


	Selection as a Function of Payoffs and Objectives
	Maximal Payoff Profile Improvements
	Reductions in Action Value
	Application: Social Attributions
	Application: Belief Polarization

	Decision-Relevance of States

	Choice Under the Decisiveness Criterion
	Attitudes Towards Diversification
	Attitudes Towards Delay of Decision-Making

	Applications
	Certainty in Expert Advice
	Shared Models and Group Polarization

	Extensions
	Plausibility Constraints on Model Selection
	Cost of Deviating from Default Beliefs
	Entry Condition on Models

	Ex-Ante Decisiveness
	Properties of Model Selection under Ex-Ante Decisiveness
	Selection as a Function of Objectives under Ex-Ante Decisiveness


	Discussion
	Model Selection for Prediction Problems
	Decision-Relevance of States: Details
	Shared Models and Group Polarization: Details
	Value of Delay: Details
	Ex-Ante Decisiveness: Details
	Behavioral Characterization and Identification Results
	Extending the Environment
	Relationship to Min-Max Regret Models
	Characterization Result
	Relative Diversification Aversion

	Proofs: Propositions in Main Text
	Proofs: Characterization and Identification Results


